User Tools

Site Tools


plant:cassava

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
plant:cassava [2020/06/15 14:14] – old revision restored (2020/06/15 15:10) rkoebnikplant:cassava [2024/12/16 15:17] (current) – [Plant Resistance Genes in Cassava (//Manihot esculenta// Crantz) against //Xanthomonas// Infection] rkoebnik
Line 1: Line 1:
-====== Cassava (//Manihot esculenta//) ======+====== Plant Resistance Genes in Cassava (//Manihot esculenta// Crantzagainst //Xanthomonas// Infection ======
  
-Author: Roland Kölliker\\ +Author: [[https://www.researchgate.net/profile/Roland_Koelliker|Roland Kölliker]]\\ 
-Internal reviewer: Massimiliano Morelli\\ +Internal reviewer: [[https://www.researchgate.net/profile/Massimiliano_Morelli|Massimiliano Morelli]]
-Expert reviewer: FIXME+
  
 ===== Pathogen: //Xanthomonas phaseoli// pv. //manihotis// (//Xpm//) ===== ===== Pathogen: //Xanthomonas phaseoli// pv. //manihotis// (//Xpm//) =====
Line 91: Line 90:
 === Synonyms === === Synonyms ===
  
-//NA//.+//NA//
 === Source === === Source ===
  
-Cassava (Li //et al//.2017b).+Cassava (Li //et al.//, 2017a).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
-Sequenced (Li //et al//.2017b).+Sequenced (Li //et al.//, 2017a).
 === Molecular markers === === Molecular markers ===
  
-//NA//.+//NA//
 === Brief description === === Brief description ===
  
-//Arabidopsis MeBIK1// overexpression lines //OX1// demonstrated a strong resistance to //Xanthomonas axonopodis// pv. //manihotis// HN01 (Li //et al//., 2017b).+//Arabidopsis MeBIK1// overexpression lines //OX1// demonstrated a strong resistance to //Xpm// strain HN01 (Li //et al//., 2017a).
  
 ---- ----
Line 111: Line 110:
 === Synonyms === === Synonyms ===
  
-//NA//.+//NA//
 === Source === === Source ===
  
-Cassava cultivar South China 124 (Li //et al.//, 2017a).+Cassava cultivar South China 124 (Li //et al.//, 2017b).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
-Sequenced (Li //et al.//, 2017a).+Sequenced (Li //et al.//, 2017b).
 === Molecular markers === === Molecular markers ===
  
-//NA//.+//NA//
 === Brief description === === Brief description ===
  
-//MebZIP3// and //MebZIP5// conferred improved disease resistance against cassava bacterial blight, with more callose depositions (Li //et al.//, 2017a).+//MebZIP3// and //MebZIP5// conferred improved disease resistance against cassava bacterial blight, with more callose depositions (Li //et al.//, 2017b).
  
 ---- ----
Line 131: Line 130:
 === Synonyms === === Synonyms ===
  
-//NA//.+//NA//
 === Source === === Source ===
  
Line 140: Line 139:
 === Molecular markers === === Molecular markers ===
  
-//NA//.+//NA//
 === Brief description === === Brief description ===
  
-Through overexpression in //Nicotiana benthamiana//, it was found that 4 //MeDELLAs// conferred improved disease resistance against cassava bacterial blight (Li //et al//., 2018).+Through overexpression in //Nicotiana benthamiana//, it was found that 4 //MeDELLAs// conferred improved disease resistance against cassava bacterial blight (Li //et al.//, 2018).
  
 ---- ----
Line 151: Line 150:
 === Synonyms === === Synonyms ===
  
-//NA//.+//NA//
 === Source === === Source ===
  
Line 160: Line 159:
 === Molecular markers === === Molecular markers ===
  
-//NA//.+//NA//
 === Brief description === === Brief description ===
  
-Polymorphisms between cultivars generally reflected geographic origin, but there was also an association with resistance to CBB, indicating that MEPX1 could be a potentially useful marker for this trait (Pereira //et al//., 2003).+Polymorphisms between cultivars generally reflected geographic origin, but there was also an association with resistance to CBB, indicating that MEPX1 could be a potentially useful marker for this trait (Pereira //et al.//, 2003).
  
 ---- ----
Line 171: Line 170:
 === Synonyms === === Synonyms ===
  
-//NA//.+//NA//
 === Source === === Source ===
  
-Cassava F1 mapping population, derived from a cross between cultivar TMS30572 and cultivar CM2177-2 (Fregene //et al//., 1997).+Cassava F1 mapping population, derived from a cross between cultivar TMS30572 and cultivar CM2177-2 (Fregene //et al.//, 1997).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
Line 183: Line 182:
 === Brief description === === Brief description ===
  
-Based on composite interval mapping analysis, strain-specific QTL for resistance to //Xam// explaining between 15.8 and 22.1% of phenotypic variancewere detected and localized on a high resolution SNP-based genetic map of cassava (Soto //et al//., 2017).+Based on composite interval mapping analysis, five strain-specific QTLs for resistance to //Xpm// explaining between 15.8 and 22.1% of phenotypic variance were detected and localized on a high resolution SNP-based genetic map of cassava (Soto //et al.//, 2017).
  
 ---- ----
Line 191: Line 190:
 === Synonyms === === Synonyms ===
  
-//NA//.+//NA//
 === Source === === Source ===
  
Line 200: Line 199:
 === Molecular markers === === Molecular markers ===
  
-//NA//.+//NA//
 === Brief description === === Brief description ===
  
-Gene expression assays showed that the transcripts of //MeRAVs// were commonly regulated after //Xanthomonas axonopodis// pv //manihotis// (//Xam//and MeRAVs were specifically located in plant cell nuclei. Through virus‐induced gene silencing (VIGS) in cassava, it was found that //MeRAV1// and //MeRAV2// are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of //Xam// in plant leaves (Wei //et al//., 2018a).+Gene expression assays showed that the transcripts of //MeRAVs// were commonly regulated after //Xpm// challenge and MeRAVs were specifically located in plant cell nuclei. Through virus‐induced gene silencing (VIGS) in cassava, it was found that //MeRAV1// and //MeRAV2// are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of //Xpm// in plant leaves (Wei //et al.//, 2018a).
  
 ---- ----
Line 211: Line 210:
 === Synonyms === === Synonyms ===
  
-//NA//.+//NA//
 === Source === === Source ===
  
Line 220: Line 219:
 === Molecular markers === === Molecular markers ===
  
-//NA//.+//NA//
 === Brief description === === Brief description ===
  
-Through transient expression in //Nicotiana benthamiana// leaves and virus-induced gene silencing (VIGS) in cassava, the essential role of //MeHsf3// in plant disease resistance was identified (Wei //et al//., 2018).+Through transient expression in //Nicotiana benthamiana// leaves and virus-induced gene silencing (VIGS) in cassava, the essential role of //MeHsf3// in plant disease resistance was identified (Wei //et al.//, 2018).
  
 ---- ----
Line 231: Line 230:
 === Synonyms === === Synonyms ===
  
-//NA//.+//NA//
 === Source === === Source ===
  
-Cassava cultivar South China 124 (Yan //et al//2017).+Cassava cultivar South China 124 (Yan //et al.//2017).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
-Sequenced (Yan //et al//., 2017).+Sequenced (Yan //et al.//, 2017).
 === Molecular markers === === Molecular markers ===
  
-//NA//.+//NA//
 === Brief description === === Brief description ===
  
-Taken together, MeWRKY20 and MeATG8a/8f/8h are essential for disease resistance against bacterial blight by forming various transcriptional modules and interacting complex in cassava (Yan //et al//., 2017; Zeng //et al//., 2018).+Taken together, MeWRKY20 and MeATG8a/8f/8h are essential for disease resistance against bacterial blight by forming various transcriptional modules and interacting complex in cassava (Yan //et al.//, 2017; Zeng //et al.//, 2018).
  
 ---- ----
Line 249: Line 248:
 ===== References ===== ===== References =====
  
-Cohn M, Bart RS, Shybut M //et al//. (2014). //Xanthomonas axonopodis// virulence is promoted by a transcription activator-like effector–mediated induction of a SWEET sugar transporter in cassava. Mol. Plant-Microbe Interact. 27: 1186-1198. DOI: [[https://doi.org/10.1094/mpmi-06-14-0161-r|10.1094/mpmi-06-14-0161-r]].+Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M, Morbitzer R, Hou BH, Frommer WB, Lahaye T, Staskawicz BJ (2014). //Xanthomonas axonopodis// virulence is promoted by a transcription activator-like effector–mediated induction of a SWEET sugar transporter in cassava. Mol. Plant Microbe Interact. 27: 1186-1198. DOI: [[https://doi.org/10.1094/mpmi-06-14-0161-r|10.1094/mpmi-06-14-0161-r]]
  
-Cohn M, Morbitzer R, Lahaye T, Staskawicz J (2016). Comparison of gene activation by two TAL effectors from //Xanthomonas axonopodis// pv. //manihotis// reveals candidate host susceptibility genes in cassava. Mol. Plant Pathol. (2016) 17: 875-889. DOI: [[https://doi.org/10.1111/mpp.12337|10.1111/Fmpp.12337]].+Cohn M, Morbitzer R, Lahaye T, Staskawicz J (2016). Comparison of gene activation by two TAL effectors from //Xanthomonas axonopodis// pv. //manihotis// reveals candidate host susceptibility genes in cassava. Mol. Plant Pathol. 17: 875-889. DOI: [[https://doi.org/10.1111/mpp.12337|10.1111/mpp.12337]]
  
-Diaz-TatisPA, Herrera-Corzo M, Ochoa Cabezas JC //et al//. (2018). The overexpression of //RXam1//, a cassava gene coding for an RLK, confers disease resistance to //Xanthomonas axonopodis// pv. //manihotis//. Planta 247: 1031-1042. DOI: [[https://doi.org/10.1007/s00425-018-2863-4|10.1007/s00425-018-2863-4]].+Díaz Tatis PA, Herrera Corzo M, Ochoa Cabezas JC, Medina Cipagauta A, Prías MA, Verdier V, Chavarriaga Aguirre P, López Carrascal CE (2018). The overexpression of //RXam1//, a cassava gene coding for an RLK, confers disease resistance to //Xanthomonas axonopodis// pv. //manihotis//. Planta 247: 1031-1042. DOI: [[https://doi.org/10.1007/s00425-018-2863-4|10.1007/s00425-018-2863-4]]
  
-Diaz-Tatis PA, Ochoa JC, Garcia L //et al//. (2019). Interfamily transfer of //Bs2// from pepper to cassava (//Manihot esculenta// Crantz). Tropical Plant Pathol. (2019) 44: 225-237. DOI: [[https://doi.org/10.1007/s40858-019-00279-y|10.1007/s40858-019-00279-y]].+Diaz-Tatis PA, Ochoa JC, Garcia L, Chavarriaga P, Bernal AJ, López CE (2019). Interfamily transfer of //Bs2// from pepper to cassava (//Manihot esculenta// Crantz). Tropical Plant Pathol. 44: 225-237. DOI: [[https://doi.org/10.1007/s40858-019-00279-y|10.1007/s40858-019-00279-y]]
  
-Fregene M, Angel F, Gómez R, Rodr'iguez F, Chavarriaga P, Roca W, //et al//. (1997). A molecular genetic map of cassava (//Manihot esculenta// Crantz). Theor. Appl. Genet. 95431441. DOI: [[https://doi.org/10.1007/s001220050580|10.1007/s001220050580]].+Fregene M, Angel F, Gómez R, Rodriguez F, Chavarriaga P, Roca W, Tohme J, Bonierbale M (1997). A molecular genetic map of cassava (//Manihot esculenta// Crantz). Theor. Appl. Genet. 95431-441. DOI: [[https://doi.org/10.1007/s001220050580|10.1007/s001220050580]]
  
-Jorge V, Fregene MA, Duque MC, Bonierbale MW, Tohme J, Verdier V (2000). Genetic mapping of resistance to bacterial blight disease in cassava (//Manihot esculenta// Crantz). Theor. Appl. Genet. 101:865872. DOI: [[https://doi.org/10.1007/s001220051554|10.1007/s001220051554]].+Jorge V, Fregene MA, Duque MC, Bonierbale MW, Tohme J, Verdier V (2000). Genetic mapping of resistance to bacterial blight disease in cassava (//Manihot esculenta// Crantz). Theor. Appl. Genet. 101: 865-872. DOI: [[https://doi.org/10.1007/s001220051554|10.1007/s001220051554]]
  
-Li X, Fan S, Hu W //et al//. (2017a). Two cassava basic leucine zipper (bZIP) transcription factors (MebZIP3 and MebZIP5) confer disease resistance against Cassava Bacterial BlightFront. Plant Sci(2017a) DOI: [[https://doi.org/10.3389/fpls.2017.02110|10.3389/fpls.2017.02110]].+Li K, Xiong X, Zhu S, Liao H, Xiao X, Tang Z, Hong Y, Li C, Luo L, Zheng L, Niu X, Chen Y (2017a). MeBIK1, a novel cassava receptor-like cytoplasmic kinase, regulates PTI response of transgenic //Arabidopsis//Funct. Plant Biol. 45: 658-667. DOI: [[https://doi.org/10.1071/FP17192|10.1071/FP17192]]
  
-Li K, Xion X, Zhu //et al//. (2017b). MeBIK1, a novel cassava receptor-like cytoplasmic kinase, regulates PTI response of transgenic //Arabidopsis//Funct. Plant Biol(2017b) 45658-667. DOI: [[https://doi.org/10.1071/FP17192|10.1071/FP17192]].+Li X, Fan S, Hu W, Liu G, Wei Y, He C, Shi H (2017b). Two cassava basic leucine zipper (bZIP) transcription factors (MebZIP3 and MebZIP5) confer disease resistance against cassava bacterial blightFront. Plant Sci82110. DOI: [[https://doi.org/10.3389/fpls.2017.02110|10.3389/fpls.2017.02110]]
  
-Li X, Liu W, Li B //et al//. (2018). Identification and functional analysis of cassava DELLA proteins in plant disease resistance against cassava bacterial blight. Plant Physiol. Biochem. 124: 70-76. DOI: [[https://doi.org/10.1016/j.plaphy.2017.12.022|10.1016/j.plaphy.2017.12.022]].+Li X, Liu W, Li B, Liu G, Wei Y, He C, Shi H (2018). Identification and functional analysis of cassava DELLA proteins in plant disease resistance against cassava bacterial blight. Plant Physiol. Biochem. 124: 70-76. DOI: [[https://doi.org/10.1016/j.plaphy.2017.12.022|10.1016/j.plaphy.2017.12.022]]
  
-Pereira LF, Goodwin PH, Erickson L (2003). Cloning of a peroxidase gene from cassava with potential as a molecular marker for resistance to bacterial blight. Braz. Arch. Biol. Technol. 46: 149-154. DOI: [[http://dx.doi.org/10.1590/S1516-89132003000200002|10.1590/S1516-89132003000200002]].+Pereira LF, Goodwin PH, Erickson L (2003). Cloning of a peroxidase gene from cassava with potential as a molecular marker for resistance to bacterial blight. Braz. Arch. Biol. Technol. 46: 149-154. DOI: [[http://dx.doi.org/10.1590/S1516-89132003000200002|10.1590/S1516-89132003000200002]]
  
-Soto Sedana JC, Mora Moreno RE, Mathew B //et al//. (2017). Major Novel QTL for resistance to Cassava Bacterial Blight identified through a multi-environmental analysis. Front. Plant Sci. 8: 1169. DOI: [[https://doi.org/10.3389/fpls.2017.01169|10.3389/fpls.2017.01169]].+Soto Sedano JC, Mora Moreno RE, Mathew B, Léon J, Gómez Cano FA, Ballvora A, López Carrascal CE (2017). Major novel QTL for resistance to cassava bacterial blight identified through a multi-environmental analysis. Front. Plant Sci. 8: 1169. DOI: [[https://doi.org/10.3389/fpls.2017.01169|10.3389/fpls.2017.01169]]
  
-Tai TH, Dahlbeck D, Clark ET, //et al//. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA96(24):14153‐14158. DOI: [[https://doi.org/10.1073/pnas.96.24.14153|10.1073/pnas.96.24.14153]].+Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA 96: 14153‐14158. DOI: [[https://doi.org/10.1073/pnas.96.24.14153|10.1073/pnas.96.24.14153]]
  
-Wei Y, Chang Y, Zeng H //et al//. (2018a). RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. J. Pineal Res. 64: e12454. DOI: [[https://doi.org/10.1111/jpi.12454|10.1111/jpi.12454]].+Wei Y, Chang Y, Zeng H, Liu G, He C, Shi H (2018a). RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. J. Pineal Res. 64: e12454. DOI: [[https://doi.org/10.1111/jpi.12454|10.1111/jpi.12454]]
  
-Wei Y, Liu G, Chang Y (2018b). Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava. Mol. Plant Pathol. 19: 2209-2220. DOI: [[https://dx.doi.org/10.1111/Fmpp.12691|10.1111/Fmpp.12691]].+Wei Y, Liu G, Chang Y (2018b). Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava. Mol. Plant Pathol. 19: 2209-2220. DOI: [[https://dx.doi.org/10.1111/mpp.12691|10.1111/mpp.12691]] 
 + 
 +Yan Y, Wang P, He C, Shi H (2017)MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava. Biochem. Biophys. Res. Commun. 494: 20-26. DOI: [[https://doi.org/10.1016/j.bbrc.2017.10.091|10.1016/j.bbrc.2017.10.091]] 
 + 
 +Zeng H, Xie Y, Liu G, Lin D, He C, Shi H (2018). Molecular identification of GAPDHs in cassava highlights the antagonism of MeGAPCs and MeATG8s in plant disease resistance against cassava bacterial blight. Plant Mol. Biol. 97: 201-214. DOI: [[https://doi.org/10.1007/s11103-018-0733-x|10.1007/s11103-018-0733-x]] 
 + 
 +----
  
-Yan Y, Wang P, He C, Shi H (2017). MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava. Biochem. Biophys. Res. Commun. 494: 20-26. DOI: [[https://doi.org/10.1016/j.bbrc.2017.10.091|10.1016/j.bbrc.2017.10.091]].+===== Acknowledgements =====
  
-Zeng HXie Y, Liu G //et al//. (2018). Molecular identification of GAPDHs in cassava highlights the antagonism of MeGAPCs and MeATG8s in plant disease resistance against cassava bacterial blight. Plant Mol. Biol. 97: 201-214. DOI: [[https://doi.org/10.1007/s11103-018-0733-x|10.1007/s11103-018-0733-x]].+This fact sheet is based upon work from COST Action CA16107 EuroXanthsupported by COST (European Cooperation in Science and Technology).
  
plant/cassava.1592226855.txt.gz · Last modified: 2023/01/09 10:20 (external edit)