User Tools

Site Tools


plant:cassava

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
plant:cassava [2020/06/14 14:38] – [References] mamoreplant:cassava [2024/12/16 15:17] (current) – [Plant Resistance Genes in Cassava (//Manihot esculenta// Crantz) against //Xanthomonas// Infection] rkoebnik
Line 1: Line 1:
-====== Cassava (//Manihot esculenta//) ======+====== Plant Resistance Genes in Cassava (//Manihot esculenta// Crantzagainst //Xanthomonas// Infection ======
  
-Author: Roland Kölliker\\ +Author: [[https://www.researchgate.net/profile/Roland_Koelliker|Roland Kölliker]]\\ 
-Internal reviewer: Massimiliano Morelli\\ +Internal reviewer: [[https://www.researchgate.net/profile/Massimiliano_Morelli|Massimiliano Morelli]]
-Expert reviewer: FIXME+
  
-===== Pathogen: //Xanthomonas axonopodis// pv. //manihotis// =====+===== Pathogen: //Xanthomonas phaseoli// pv. //manihotis// (//Xpm//=====
  
 ==== Resistance gene: //meSWEET10a// ==== ==== Resistance gene: //meSWEET10a// ====
Line 11: Line 10:
 === Synonyms === === Synonyms ===
  
-cassava4.1_013474 (Sui //et al//., 2017).+cassava4.1_013474 (Sui //et al.//, 2017).
 === Source === === Source ===
  
-Cassava cultivar TMS 60444 (Cohn //et al//., 2014; Cohn //et al//., 2016).+Cassava cultivar TMS 60444 (Cohn //et al.//, 2014; Cohn //et al.//, 2016).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
-Sequenced. +Sequenced (Cohn //et al.//, 2014).
 === Molecular markers === === Molecular markers ===
  
-//NA//.+//NA//
 === Brief description === === Brief description ===
  
-Interacts with Tal20<sub>Xam668</sub> (Cohn //et al//., 2014).+Interacts with Tal20<sub>Xam668</sub> (Cohn //et al.//, 2014).
  
 ---- ----
Line 32: Line 30:
 === Synonyms === === Synonyms ===
  
-//NA//.+//NA//
 === Source === === Source ===
  
-Cassava cultivar TMS 60444 (Cohn //et al//., 2016).+Cassava cultivar TMS 60444 (Cohn //et al.//, 2016).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
-Identified (Cohn //et al//., 2016).+Identified (Cohn //et al.//, 2016).
 === Molecular markers === === Molecular markers ===
  
-//NA//.+//NA//
 === Brief description === === Brief description ===
  
-RNA sequencing was used to identify the full target repertoire of TAL14<sub>Xam668</sub> in cassava, which includes over 50 genes. A subset of highly up-regulated genes was tested for activation by TAL14<sub>CIO151</sub> from //Xam// strain CIO151 (Cohn //et al//., 2016).+RNA sequencing was used to identify the full target repertoire of TAL14<sub>Xam668</sub> in cassava, which includes over 50 genes. A subset of highly up-regulated genes was tested for activation by TAL14<sub>CIO151</sub> from //Xpm// strain CIO151 (Cohn //et al.//, 2016).
  
 ---- ----
Line 52: Line 50:
 === Synonyms === === Synonyms ===
  
-PCR250; Xa21-like resistance gene (Diaz-Tatis //et al//., 2018).+PCR250; Xa21-like resistance gene (Diaz-Tatis //et al.//, 2018).
 === Source === === Source ===
  
-Cassava cultivars MBra685 and MBra902 (Diaz-Tatis //et al//., 2018).+Cassava cultivars MBra685 and MBra902 (Diaz-Tatis //et al.//, 2018).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
-Sequenced. +Sequenced (Diaz-Tatis //et al.//, 2018).
 === Molecular markers === === Molecular markers ===
  
Line 65: Line 62:
 === Brief description === === Brief description ===
  
-Overexpression of //RXam1// leads to a reduction in bacterial growth of //Xam//CIO136. This suggests that //RXam1// might be implicated in strain-specific resistance to //Xam//CIO136 (Diaz-Tatis //et al//., 2018).+Overexpression of //RXam1// leads to a reduction in bacterial growth of //Xpm// CIO136. This suggests that //RXam1// might be implicated in strain-specific resistance to //Xpm// CIO136 (Diaz-Tatis //et al.//, 2018).
  
 ---- ----
Line 73: Line 70:
 === Synonyms === === Synonyms ===
  
-//NA//.+//NA//
 === Source === === Source ===
  
-Pepper (Tai //et al//., 1999; Diaz-Tatis //et al//., 2019).+Pepper (Tai //et al.//, 1999; Diaz-Tatis //et al.//, 2019).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
  
-Sequenced. +Sequenced (Diaz-Tatis //et al.//, 2019).
 === Molecular markers === === Molecular markers ===
  
-//NA//.+//NA//
 === Brief description === === Brief description ===
  
-Transgenic cassava plants that functionally express //Bs2// were regenerated. These results showed that overexpression of //Bs2// in a highly susceptible cultivar leads to reactive oxygen species production. However, the overexpression of //Bs2// neither leads to an HR in cassava nor reduces //Xam// growth on //in vitro// plants (Diaz-Tatis //et al//., 2019).+Transgenic cassava plants that functionally express //Bs2// were regenerated. These results showed that overexpression of //Bs2// in a highly susceptible cultivar leads to reactive oxygen species production. However, the overexpression of //Bs2// neither leads to an HR in cassava nor reduces //Xpm// growth on //in vitro// plants (Diaz-Tatis //et al.//, 2019).
  
 ---- ----
Line 93: Line 89:
  
 === Synonyms === === Synonyms ===
-//NA//. 
  
 +//NA//
 === Source === === Source ===
-Cassava. 
  
 +Cassava (Li //et al.//, 2017a).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
-Sequenced. 
  
 +Sequenced (Li //et al.//, 2017a).
 === Molecular markers === === Molecular markers ===
-//NA//. 
  
 +//NA//
 === Brief description === === Brief description ===
-//Arabidopsis MeBIK1// overexpression lines //OX1// demonstrated a strong resistance to //Xanthomonas axonopodis// pv. //manihotis// HN01 (Li //et al//., 2017b).+ 
 +//Arabidopsis MeBIK1// overexpression lines //OX1// demonstrated a strong resistance to //Xpm// strain HN01 (Li //et al//., 2017a).
  
 ---- ----
Line 113: Line 110:
 === Synonyms === === Synonyms ===
  
 +//NA//
 === Source === === Source ===
-Cassava. 
  
 +Cassava cultivar South China 124 (Li //et al.//, 2017b).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
-Sequenced. 
  
 +Sequenced (Li //et al.//, 2017b).
 === Molecular markers === === Molecular markers ===
-//NA//. 
  
 +//NA//
 === Brief description === === Brief description ===
-//MebZIP3// and //MebZIP5// conferred improved disease resistance against cassava bacterial blight, with more callose depositions.+ 
 +//MebZIP3// and //MebZIP5// conferred improved disease resistance against cassava bacterial blight, with more callose depositions (Li //et al.//, 2017b).
  
 ---- ----
Line 130: Line 129:
  
 === Synonyms === === Synonyms ===
-//NA//. 
  
 +//NA//
 === Source === === Source ===
-Cassava. 
  
 +Cassava cultivas South China 124 (Li //et al.//, 2018).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
-Sequenced. 
  
 +Sequenced (Li //et al.//, 2018).
 === Molecular markers === === Molecular markers ===
-//NA//. 
  
 +//NA//
 === Brief description === === Brief description ===
-Through overexpression in [[https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/nicotiana-benthamiana|//Nicotiana benthamiana//]]we found that 4 //MeDELLAs// conferred improved disease resistance against cassava bacterial [[https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/blight|blight]] (Li //et al//., 2018).+ 
 +Through overexpression in //Nicotiana benthamiana//, it was found that 4 //MeDELLAs// conferred improved disease resistance against cassava bacterial blight (Li //et al.//, 2018).
  
 ---- ----
Line 149: Line 149:
  
 === Synonyms === === Synonyms ===
-//NA//. 
  
 +//NA//
 === Source === === Source ===
-Cassava cultivar MCOL22. 
  
 +Cassava cultivar MCOL22 (Pereira //et al.//, 2003).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
-Sequenced. 
  
 +Sequenced (Pereira //et al.//, 2003).
 === Molecular markers === === Molecular markers ===
-//NA//. 
  
 +//NA//
 === Brief description === === Brief description ===
-Polymorphisms between cultivars generally reflected geographic origin, but there was also an association with resistance to CBB, indicating that MEPX1 could be a potentially useful marker for this trait (Pereira //et al//., 2003).+ 
 +Polymorphisms between cultivars generally reflected geographic origin, but there was also an association with resistance to CBB, indicating that MEPX1 could be a potentially useful marker for this trait (Pereira //et al.//, 2003).
  
 ---- ----
Line 168: Line 169:
  
 === Synonyms === === Synonyms ===
-//NA//. 
  
 +//NA//
 === Source === === Source ===
-Cassava F1 mapping population. 
  
 +Cassava F1 mapping population, derived from a cross between cultivar TMS30572 and cultivar CM2177-2 (Fregene //et al.//, 1997).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
-Mapped. 
  
 +Mapped (Soto //et al.//, 2017).
 === Molecular markers === === Molecular markers ===
-Various defence related candidate genes. 
  
 +Various defence related candidate genes (Soto //et al.//, 2017).
 === Brief description === === Brief description ===
-Based on composite interval mapping analysis, strain-specific QTL for resistance to //Xam// explaining between 15.8 and 22.1% of phenotypic variancewere detected and localized on a high resolution SNP-based genetic map of cassava (Soto //et al//., 2017).+ 
 +Based on composite interval mapping analysis, five strain-specific QTLs for resistance to //Xpm// explaining between 15.8 and 22.1% of phenotypic variance were detected and localized on a high resolution SNP-based genetic map of cassava (Soto //et al.//, 2017).
  
 ---- ----
Line 187: Line 189:
  
 === Synonyms === === Synonyms ===
-//NA//. 
  
 +//NA//
 === Source === === Source ===
-Cassava. 
  
 +Cassava cultivar South China 124 (Wei //et al.//, 2018a).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
-Sequenced. 
  
 +Sequenced (Wei //et al.//, 2018a).
 === Molecular markers === === Molecular markers ===
-//NA//. 
  
 +//NA//
 === Brief description === === Brief description ===
-Gene expression assays showed that the transcripts of //MeRAVs// were commonly regulated after //Xanthomonas axonopodis// pv //manihotis// (//Xam//and MeRAVs were specifically located in plant cell nuclei. Through virus‐induced gene silencing (VIGS) in cassava, we found that //MeRAV1// and //MeRAV2// are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of //Xam// in plant leaves (Wei //et al//., 2018a).+ 
 +Gene expression assays showed that the transcripts of //MeRAVs// were commonly regulated after //Xpm// challenge and MeRAVs were specifically located in plant cell nuclei. Through virus‐induced gene silencing (VIGS) in cassava, it was found that //MeRAV1// and //MeRAV2// are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of //Xpm// in plant leaves (Wei //et al.//, 2018a).
  
 ---- ----
Line 206: Line 209:
  
 === Synonyms === === Synonyms ===
-//NA//. 
  
 +//NA//
 === Source === === Source ===
-Cassava. 
  
 +Cassava cultivar South China 124 (Wei //et al.//, 2018).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
-Sequenced. 
  
 +Sequenced (Wei //et al.//, 2018).
 === Molecular markers === === Molecular markers ===
-//NA//. 
  
 +//NA//
 === Brief description === === Brief description ===
-Through transient expression in //Nicotiana benthamiana// leaves and virus-induced gene silencing (VIGS) in cassava, we identified the essential role of //MeHsf3// in plant disease resistance (Wei //et al//., 2018).+ 
 +Through transient expression in //Nicotiana benthamiana// leaves and virus-induced gene silencing (VIGS) in cassava, the essential role of //MeHsf3// in plant disease resistance was identified (Wei //et al.//, 2018).
  
 ---- ----
Line 225: Line 229:
  
 === Synonyms === === Synonyms ===
-//NA//. 
  
 +//NA//
 === Source === === Source ===
-Cassava. 
  
 +Cassava cultivar South China 124 (Yan //et al.//, 2017).
 === Status (identified, mapped, cloned, sequenced) === === Status (identified, mapped, cloned, sequenced) ===
-Sequenced. 
  
 +Sequenced (Yan //et al.//, 2017).
 === Molecular markers === === Molecular markers ===
-//NA//. 
  
 +//NA//
 === Brief description === === Brief description ===
-Taken together, MeWRKY20 and MeATG8a/8f/8h are essential for disease resistance against bacterial blight by forming various transcriptional modules and interacting complex in cassava (Yan //et al//., 2017; Zeng //et al//., 2018) .+ 
 +Taken together, MeWRKY20 and MeATG8a/8f/8h are essential for disease resistance against bacterial blight by forming various transcriptional modules and interacting complex in cassava (Yan //et al.//, 2017; Zeng //et al.//, 2018).
  
 ---- ----
Line 243: Line 248:
 ===== References ===== ===== References =====
  
-Cohn M, Bart RS, Shybut M //et al//. (2014). //Xanthomonas axonopodis// virulence is promoted by a transcription activator-like effector–mediated induction of a SWEET sugar transporter in Cassava. Mol. Plant-Microbe Interact. 27: 1186-1198. DOI: [[https://doi.org/10.1094/MPMI-06-14-0161-R|10.1094/MPMI-06-14-0161-R]].+Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M, Morbitzer R, Hou BH, Frommer WB, Lahaye T, Staskawicz BJ (2014). //Xanthomonas axonopodis// virulence is promoted by a transcription activator-like effector–mediated induction of a SWEET sugar transporter in cassava. Mol. Plant Microbe Interact. 27: 1186-1198. DOI: [[https://doi.org/10.1094/mpmi-06-14-0161-r|10.1094/mpmi-06-14-0161-r]]
  
-Cohn M, Morbitzer R, Lahaye T, Staskawicz J (2016). Comparison of gene activation by two TAL effectors from //Xanthomonas axonopodis// pv. //manihotis// reveals candidate host susceptibility genes in cassava. Mol. Plant Pathol. (2016) 17: 875-889. DOI: [[https://dx.doi.org/10.1111/Fmpp.12337|10.1111/Fmpp.12337]].+Cohn M, Morbitzer R, Lahaye T, Staskawicz J (2016). Comparison of gene activation by two TAL effectors from //Xanthomonas axonopodis// pv. //manihotis// reveals candidate host susceptibility genes in cassava. Mol. Plant Pathol. 17: 875-889. DOI: [[https://doi.org/10.1111/mpp.12337|10.1111/mpp.12337]]
  
-Diaz-TatisPA, Herrera-Corzo M, Ochoa Cabezas JC //et al//. (2018). The overexpression of //RXam1//, a cassava gene coding for an RLK, confers disease resistance to //Xanthomonas axonopodis// pv. //manihotis//. Planta 247: 1031-1042. DOI: [[https://doi.org/10.1007/s00425-018-2863-4|10.1007/s00425-018-2863-4]].+Díaz Tatis PA, Herrera Corzo M, Ochoa Cabezas JC, Medina Cipagauta A, Prías MA, Verdier V, Chavarriaga Aguirre P, López Carrascal CE (2018). The overexpression of //RXam1//, a cassava gene coding for an RLK, confers disease resistance to //Xanthomonas axonopodis// pv. //manihotis//. Planta 247: 1031-1042. DOI: [[https://doi.org/10.1007/s00425-018-2863-4|10.1007/s00425-018-2863-4]]
  
-Diaz-Tatis PA, Ochoa JC, Garcia L //et al//. (2019). Interfamily transfer of //Bs2// from pepper to cassava (//Manihot esculenta// Crantz). Tropical Plant Pathol. (2019) 44: 225-237. DOI: [[https://doi.org/10.1007/s40858-019-00279-y|10.1007/s40858-019-00279-y]].+Diaz-Tatis PA, Ochoa JC, Garcia L, Chavarriaga P, Bernal AJ, López CE (2019). Interfamily transfer of //Bs2// from pepper to cassava (//Manihot esculenta// Crantz). Tropical Plant Pathol. 44: 225-237. DOI: [[https://doi.org/10.1007/s40858-019-00279-y|10.1007/s40858-019-00279-y]]
  
-Jorge V, Fregene MADuque MCBonierbale MW, Tohme J, Verdier V (2000). Genetic mapping of resistance to bacterial blight disease in cassava (//Manihot esculenta// Crantz). Theor. Appl. Genet. 101:865–872. DOI: [[https://doi.org/10.1007/s001220051554|10.1007/s001220051554]].+Fregene MAngel FGómez R, Rodriguez F, Chavarriaga P, Roca W, Tohme J, Bonierbale M (1997). A molecular genetic map of cassava (//Manihot esculenta// Crantz). Theor. Appl. Genet. 95431-441. DOI: [[https://doi.org/10.1007/s001220050580|10.1007/s001220050580]]
  
-Li XFan SHu W //et al//. (2017a). Two Cassava Basic Leucine Zipper (bZIP) Transcription Factors (MebZIP3 and MebZIP5) Confer Disease Resistance against Cassava Bacterial BlightFrontPlant Sci(2017a) DOI: [[https://doi.org/10.3389/fpls.2017.02110|10.3389/fpls.2017.02110]].+Jorge VFregene MADuque MC, Bonierbale MW, Tohme J, Verdier V (2000). Genetic mapping of resistance to bacterial blight disease in cassava (//Manihot esculenta// Crantz). TheorApplGenet. 101: 865-872. DOI: [[https://doi.org/10.1007/s001220051554|10.1007/s001220051554]]
  
-Li K, Xion X, Zhu S //et al//. (2017b). MeBIK1, a novel cassava receptor-like cytoplasmic kinase, regulates PTI response of transgenic Arabidopsis. Funct. Plant Biol. (2017b) 45: 658-667. DOI: [[https://doi.org/10.1071/FP17192|10.1071/FP17192]].+Li K, Xiong X, Zhu S, Liao H, Xiao X, Tang Z, Hong Y, Li C, Luo L, Zheng L, Niu X, Chen Y (2017a). MeBIK1, a novel cassava receptor-like cytoplasmic kinase, regulates PTI response of transgenic //Arabidopsis//. Funct. Plant Biol. 45: 658-667. DOI: [[https://doi.org/10.1071/FP17192|10.1071/FP17192]]
  
-Li X, Liu W, Li B //et al//. (2018). Identification and functional analysis of cassava DELLA proteins in plant disease resistance against cassava bacterial blight. Plant PhysiolBiochem12470-76. DOI: [[https://doi.org/10.1016/j.plaphy.2017.12.022|10.1016/j.plaphy.2017.12.022]].+Li X, Fan S, Hu W, Liu G, Wei Y, He C, Shi H (2017b)Two cassava basic leucine zipper (bZIPtranscription factors (MebZIP3 and MebZIP5) confer disease resistance against cassava bacterial blight. FrontPlant Sci82110. DOI: [[https://doi.org/10.3389/fpls.2017.02110|10.3389/fpls.2017.02110]]
  
-Pereira LFGoodwin PHErickson L (2003). Cloning of a Peroxidase Gene from Cassava with Potential as a Molecular Marker for Resistance to Bacterial BlightBrazilian Archives of Biology and Technology 46149-154. DOI: [[http://dx.doi.org/10.1590/S1516-89132003000200002|10.1590/S1516-89132003000200002]].+Li XLiu WLi B, Liu G, Wei Y, He C, Shi H (2018). Identification and functional analysis of cassava DELLA proteins in plant disease resistance against cassava bacterial blightPlant Physiol. Biochem. 12470-76. DOI: [[https://doi.org/10.1016/j.plaphy.2017.12.022|10.1016/j.plaphy.2017.12.022]]
  
-Soto Sedana JCMora Moreno REMathew B //et al//. (2017). Major Novel QTL for Resistance to Cassava Bacterial Blight Identified through a Multi-Environmental AnalysisFrontPlant Sci81169. DOI: [[https://doi.org/10.3389/fpls.2017.01169|10.3389/fpls.2017.01169]].+Pereira LFGoodwin PHErickson L (2003). Cloning of a peroxidase gene from cassava with potential as a molecular marker for resistance to bacterial blightBrazArchBiol. Technol. 46149-154. DOI: [[http://dx.doi.org/10.1590/S1516-89132003000200002|10.1590/S1516-89132003000200002]]
  
-Wei YChang YZeng H //et al//. (2018a). RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genesJPineal Res64e12454. DOI: [[https://doi.org/10.1111/jpi.12454|10.1111/jpi.12454]].+Soto Sedano JCMora Moreno REMathew B, Léon J, Gómez Cano FA, Ballvora A, López Carrascal CE (2017). Major novel QTL for resistance to cassava bacterial blight identified through a multi-environmental analysisFrontPlant Sci81169. DOI: [[https://doi.org/10.3389/fpls.2017.01169|10.3389/fpls.2017.01169]]
  
-Wei Y, Liu G, Chang Y (2018b). Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava. Mol. Plant Pathol. 19: 2209-2220. DOI: [[https://dx.doi.org/10.1111/Fmpp.12691|10.1111/Fmpp.12691]].+Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA 96: 14153‐14158. DOI: [[https://doi.org/10.1073/pnas.96.24.14153|10.1073/pnas.96.24.14153]] 
 + 
 +Wei Y, Chang Y, Zeng H, Liu G, He C, Shi H (2018a). RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. J. Pineal Res. 64: e12454. DOI: [[https://doi.org/10.1111/jpi.12454|10.1111/jpi.12454]] 
 + 
 +Wei Y, Liu G, Chang Y (2018b). Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava. Mol. Plant Pathol. 19: 2209-2220. DOI: [[https://dx.doi.org/10.1111/mpp.12691|10.1111/mpp.12691]] 
 + 
 +Yan Y, Wang P, He C, Shi H (2017)MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava. Biochem. Biophys. Res. Commun. 494: 20-26. DOI: [[https://doi.org/10.1016/j.bbrc.2017.10.091|10.1016/j.bbrc.2017.10.091]] 
 + 
 +Zeng H, Xie Y, Liu G, Lin D, He C, Shi H (2018). Molecular identification of GAPDHs in cassava highlights the antagonism of MeGAPCs and MeATG8s in plant disease resistance against cassava bacterial blight. Plant Mol. Biol. 97: 201-214. DOI: [[https://doi.org/10.1007/s11103-018-0733-x|10.1007/s11103-018-0733-x]] 
 + 
 +----
  
-Yan Y, Wang P, He C, Shi H (2017). MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava. Biochem. Biophys. Res. Commun. 494: 20-26. DOI: [[https://doi.org/10.1016/j.bbrc.2017.10.091|10.1016/j.bbrc.2017.10.091]].+===== Acknowledgements =====
  
-Zeng HXie Y, Liu G //et al//. (2018). Molecular identification of GAPDHs in cassava highlights the antagonism of MeGAPCs and MeATG8s in plant disease resistance against cassava bacterial blight. Plant Mol. Biol. 97: 201-214. DOI: [[https://doi.org/10.1007/s11103-018-0733-x|10.1007/s11103-018-0733-x]].+This fact sheet is based upon work from COST Action CA16107 EuroXanthsupported by COST (European Cooperation in Science and Technology).
  
plant/cassava.1592141924.txt.gz · Last modified: 2023/01/09 10:20 (external edit)