Table of Contents

Plant Resistance Genes in Banana (//Musa balbisiana// and Pisang Awak cultivar) against //Xanthomonas// Infection

Author: Rita Fernandes
Internal reviewer: Noemi Casarin

Pathogen: //Xanthomonas vasicola// pv. //musacearum// (//Xvm//)

Resistance gene: germin-like protein 8-14 gene

Synonyms

GER1, GLP1, Ma02_g20530.1, Ma09_p15510.1, LOC103998053, LOC103976190.

Source

Musa alcuminata subsp//. malaccensis//.

Status (identified, mapped, cloned, sequenced)

Identified (Tripathi et al., 2019), mapped on chromosome 2 and 9, sequenced (D'Hont et al., 2012; Hubert et al., 2014).

Molecular markers

NA

Brief description

Stress associated gene, similar to germin 3 of Arabidopsis thaliana (Tripathi et al., 2019), codes for germin-like proteins with functions such as manganese ion binding (GO:0030145), nutrient reservoir activity (GO:0045735), metal ion binding (GO:0046872) and which play role in oxidation-reduction process. Upregulated in Musa balbisiana and cultivar Pisang Awak after both 12 hpi (hours post-inoculation) with Xvm (Tripathi et al., 2019).


Resistance gene: //RPM1// gene

Synonyms

Putative disease resistance RPM1, Ma09_g28690, GSMUA_Achr9G28020_001, LOC103999252, XM_009420945.2.

Source

Musa alcuminata subsp//. malaccensis//.

Status (identified, mapped, cloned, sequenced)

Identified, mapped on chromosome 9, sequenced (D'Hont et al., 2012).

Molecular markers

NA

Brief description

Gene involved in plant-pathogen interaction, coding for disease resistance protein RPM1, which is an ADP binding (GO:0043531) and which confers resistance to Pseudomonas syringae pv. maculicola 1. Activated in Musa balbisiana as early response to Xvm at 12 hpi (hours post-inoculation) (Tripathi et al., 2019). Organism-specific biosystem.


Resistance gene: BAG family molecular chaperone regulator 6-like

Synonyms

Ma10_g14770, XM_009422955.2, LOC104000818, GSMUA_Achr10G14650_001.

Source

Musa alcuminata //subsp. malaccensis//.

Status (identified, mapped, cloned, sequenced)

Identified (Tripathi et al., 2019), mapped on chromosome 2 and 9, sequenced (D'Hont et al., 2012; Hubert et al., 2014).

Molecular markers

NA

Brief description

Protein binding (GO:0005515), chaperone binding (GO:0051087), apoptosis regulator. Activated in Musa balbisiana as early response to Xvm at 12 hpi (hours post-inoculation) (Tripathi et al., 2019).


Resistance gene: MYB transcription factor gene

Synonyms

Ma05_g25630, GSMUA_Achr5G23240_001, LOC103985880, XM_018826157.1.

Source

Musa alcuminata subsp. malaccensis.

Status (identified, mapped, cloned, sequenced)

Identified, mapped on chromosome 5, sequenced (Medina-Suárez et al., 1997; D'Hont et al., 2012; Hubert et al., 2014).

Molecular markers

NA

Brief description

Gene coding for MYB transcription factor, involved in DNA binding (GO:0003677), activated in Pisang Awak at 12 hpi (hours post-inoculation) with Xvm (Tripathi et al., 2019).


Resistance gene: Ninja-family protein AFP3-like gene

Synonyms

Ma04_t39350.1, GSMUA_Achr5G23240_001, LOC103982144, XM_009398965.2.

Source

Musa alcuminata subsp. malaccensis.

Status (identified, mapped, cloned, sequenced)

Identified, mapped on chromosome 4, sequenced (D'Hont et al., 2012).

Molecular markers

NA

Brief description

Coding for Ninja-family protein AFP3-like. Signal transduction (GO:0007165), role in Abscisic acid (ABA) metabolism, activated in Musa balbisiana at both 12 and 48 hpi (hours post-inoculation) with Xvm (Tripathi et al., 2019).


Resistance gene: lipase-like //PAD4//

Synonyms

Ma06_t14360.1 (Tripathi et al., 2019), LOC103987676, XM_009406048.2, GSMUA_Achr6G12900_001.

Source

Musa alcuminata subsp. malaccensis.

Status (identified, mapped, cloned, sequenced)

Identified, mapped on chromosome 6, sequenced (Medina-Suárez et al., 1997; D'Hont et al., 2012; Hubert et al., 2014).

Molecular markers

NA

Brief description

Gene coding for lipase-like PAD4 protein, which is involved in SA signalling, in hydrolase activity (GO:0016787) and in lipid metabolic process (GO:0006629). R-gene-mediated and basal plant disease resistance. Activated in Musa balbisiana 48 hpi (hours post-inoculation) with Xvm (Tripathi et al., 2019).


Resistance gene: putative 26.5 kDa heat shock

Synonyms

GSMUA_Achr9G28520_001, LOC103999445, Ma09_t29150.1.

Source

Musa alcuminata subsp. malaccensis.

Status (identified, mapped, cloned, sequenced)

Identified, mapped on chromosome 6 (D'Hont et al., 2012; Hubert et al., 2014).

Molecular markers

NA

Brief description

Gene coding for 26.5 kDa heat shock protein, mitochondrial-like. Protein processing in endoplasmic reticulum, conserved biosystem, response to heat (GO:0009408), response to high light intensity (GO:0009644), response to hydrogen peroxide (GO:0042542). Activated in Musa balbisiana 12 hpi (hours post-inoculation) with Xvm (Tripathi et al., 2019).


Resistance gene: vicilin-like seed storage At2g18540

Synonyms

Ma03_t31180.1, LOC103980070, GSMUA_Achr3G29960_001.

Source

Musa alcuminata subsp. malaccensis.

Status (identified, mapped, cloned, sequenced)

Identified, mapped on chromosome 3, sequenced (D'Hont et al., 2012; Hubert et al., 2014).

Molecular markers

NA

Brief description

Gene coding for signal peptide vicilin-like seed storage protein At2g18540, plant-derived inhibitors known for having antibacterial and antifungal activity, nutrient reservoir activity (GO:0045735). Activated in Musa balbisiana 12 hpi (hours post-inoculation) with Xvm (Tripathi et al., 2019).


Resistance gene: //hrap//

Synonyms

Extracellular ribonuclease LE-like, AF168415.1, LOC107877517.

Source

Transformed into banana cultivars ‘Sukali Ndiizi’ and ‘Nakinyika’, but isolated from sweet pepper (Capsicum annuum) (Tripathi et al., 2019).

Status (identified, mapped, cloned, sequenced)

Identified, mapped on chromosome 7 (of sweet pepper) and sequenced (Chen et al., 2000; Qin et al., 2014).

Molecular markers

NA

Brief description

Extracellular ribonuclease LE-like, encodes for hypersensitive response assisting protein, ribonuclease T2 activity, RNA binding. Role in intensifying the hypersensitive response mediated by harpinPSS (harpin derived from Pseudomonas syringae pv. syringae) by dissociating multimeric forms of the hairpin into dimers and monomers that trigger stronger hypersensitive cell death necrosis (Tripathi et al., 2014).


Resistance gene: //Pflp//

Synonyms

ap1, LOC107839912, AF039662.1.

Source

Transformed into banana cultivars ‘Sukali Ndiizi’ and ‘Nakinyika’, but isolated from sweet pepper (Capsicum annuum) (Namukwaya et al., 2012).

Status (identified, mapped, cloned, sequenced)

Mapped on chromosome 8 of sweet pepper (Capsicum annuum), sequenced (Dayakar et al., 2003; Qin et al., 2014).

Molecular markers

NA

Brief description

Encodes for ferredoxin-like protein (member of photosynthesis proteins), chloroplastic. Known resistance against various bacterial pathogens like Erwinia, Pseudomonas, Ralstonia, and Xanthomonas spp. in other plants. Over-expression of this gene leads to intensified production of active oxygen species (AOS) and activation of the hypersensitive response (HR) when plants are challenged with bacterial pathogens (Namukwaya et al., 2012).


References

Chen CH, Lin HJ, Ger MJ, Chow D, Feng TY (2000). cDNA cloning and characterization of a plant protein that may be associated with the harpinPSS-mediated hypersensitive response. Plant Mol. Biol. 43: 429-438. DOI: 10.1023/a:1006448611432

D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488: 213. DOI: 10.1038/nature11241

Dayakar BV, Lin HJ, Chen CH, Ger MJ, Lee BH, Pai CH, Chow D, Huang HE, Hwang SY, Chung MC (2003). Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpin pss-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). Plant Mol. Biol. 51: 913-924. DOI: 10.1023/a:1023061303755

Hubert O, Piral G, Galas C, Baurens F-C, Mbéguié-A-Mbéguié D (2014). Changes in ethylene signaling and MADS box gene expression are associated with banana finger drop. Plant Sci. 223: 99-108. DOI: 10.1016/j.plantsci.2014.03.008

Medina-Suárez R, Manning K, Fletcher J, Aked J, Bird CR, Seymour GB (1997). Gene expression in the pulp of ripening bananas (two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs). Plant Physiol. 115: 453-461. DOI: 10.1104/pp.115.2.453

Namukwaya B, Tripathi L, Tripathi J, Arinaitwe G, Mukasa S, Tushemereirwe W (2012). Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Res. 21: 855-865. DOI: 10.1007/s11248-011-9574-y

Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y (2014). Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc. Natl. Acad. Sci. USA 111: 5135-5140. DOI: 10.1073/pnas.1400975111

Tripathi L, Tripathi JN, Kiggundu A, Korie S, Shotkoski F, Tushemereirwe WK (2014). Field trial of Xanthomonas wilt disease-resistant bananas in East Africa. Nat. Biotech. 32: 868-870. DOI: 10.1038/nbt.3007

Tripathi L, Tripathi JN, Shah T, Muiruri KS, Katari M (2019). Molecular basis of disease resistance in banana progenitor Musa balbisiana against Xanthomonas campestris pv. musacearum. Sci. Rep. 9: 7007. DOI: 10.1038/s41598-019-43421-1


Further reading

Biruma M, Pillay M, Tripathi L, Blomme G, Abele S, Mwangi M, Bandyopadhyay R, Muchunguzi P, Kassim S, Nyine M, Turyagyenda L, Eden-Green S (2007). Banana Xanthomonas wilt: a review of the disease, management strategies and future research directions. African J. Biotechnol. 6: 953-962. PDF: www.ajol.info/index.php/ajb/article/view/56989

Cox KL Jr, Babilonia K, Wheeler T, He P, Shan L (2019). Return of old foes - recurrence of bacterial blight and Fusarium wilt of cotton. Curr. Opin. Plant Biol. 50: 95-103. DOI: 10.1016/j.pbi.2019.03.012

Endah R, Coutinho T, Chikwamba R (2009). Xanthomonas campestris pv. musacearum induces sequential expression of two NPR-1 like genes in banana. Aspects Appl. Biol. 96: 325-330.

Jin Y, Goodman RE, Tetteh AO, Lu M, Tripathi L (2017). Bioinformatics analysis to assess potential risks of allergenicity and toxicity of HRAP and PFLP proteins in genetically modified bananas resistant to Xanthomonas wilt disease. Food Chem. Toxicol. 109: 81-89. DOI: 10.1016/j.fct.2017.08.024

Merga IF, Tripathi L, Hvoslef-Eide AK, Gebre E (2019). Application of genetic engineering for control of bacterial wilt disease of enset, Ethiopia's sustainability crop. Front. Plant Sci. 10: 133. DOI: 10.3389/fpls.2019.00133

Muwongeab A, Tripathi J, Kunert K, Tripathi L (2016). Expressing stacked HRAP and PFLP genes in transgenic banana has no synergistic effect on resistance to Xanthomonas wilt disease. South African J. Botany 104: 125-133. DOI: 10.1016/j.sajb.2015.09.017

Nakato G, Christelová P, Were E, Nyine M, Coutinho TA, Doležel J, Uwimana B, Swennen R, Mahuku G (2019). Sources of resistance in Musa to Xanthomonas campestris pv. musacearum, the causal agent of banana xanthomonas wilt. Plant Pathol. 68: 49-59. DOI: 10.1111/ppa.12945

Nakato V, Mahuku G, Coutinho T 2018). Xanthomonas campestris pv. musacearum: a major constraint to banana, plantain and enset production in central and east Africa over the past decade. Mol. Plant Pathol. 19: 525‐536. DOI: doi:10.1111/mpp.12578

Smith J, Jones D, Karamura E, Blomme G, Turyagyenda F (2008). An analysis of the risk from Xanthomonas campestris pv. musacearum to banana cultivation in Eastern, Central and Southern Africa. Bioversity International, Montpellier, France ISBN: 978-972.

Ssekiwoko F, Kiggundu A, Tushemereirwe W, Karamura E, Kunert K (2015). Xanthomonas vasicola pv. musacearum down-regulates selected defense genes during its interaction with both resistant and susceptible banana. Physiol. Mol. Plant Pathol. 90: 21-26. DOI: 10.1016/j.pmpp.2015.02.007

Tripathi L, Atkinson H, Roderick H, Kubiriba J, Tripathi JN (2017). Genetically engineered bananas resistant to Xanthomonas wilt disease and nematodes. Food Energy Secur. 6: 37-47. DOI: 10.1002/fes3.101

Tripathi JN, Lorenzen J, Bahar O, Ronald P, Tripathi L (2014). Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum. Plant Biotechnol. J. 12: 663-673. doi: 10.1111/pbi.12170

Tripathi L, Mwaka H, Tripathi JN, Tushemereirwe WK (2010). Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum. Mol. Plant Pathol. 11: 721-731. DOI: 10.1111/j.1364-3703.2010.00639.x

Tripathi L, Ntui VO, Tripathi JN (2022). Control of bacterial diseases of banana using CRISPR/Cas-based gene editing. Int. J. Mol. Sci. 23: 3619. DOI: 10.3390/ijms23073619


Acknowledgements

This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).