Author: Matthieu Arlat
Internal reviewer: Ralf Koebnik
Class: XopAL
Family: XopAL2
Prototype: XopAL2 (Xanthomonas campestris pv. campestris; strain B100) (Vorhölter et al., 2008)
GenBank ID: CAP49952.1 (293 aa)
RefSeq ID: WP_012437264.1 (293 aa)
3D structure: Unknown
Gene annotated in the genome of Xanthomonas campestris pv. campestris B100 (XccB100) (Vorhölter et al., 2008).
No experimental evidence. Identified in XccB100 genome and annotated as XopAL2, displays 29% identity and 43% similarity with XopAL1 at the amino acid sequence level.
Presence of a putative PIP box in the promoter region (Matthieu Arlat, personnal communication).
XopAL2 was found to be associated with variations in disease symptoms when testing a set of 45 X. campestris pv. campestris strains on two Arabidopsis natural accessions (Guy et al., 2013).
Unknown.
Unknown.
Unknown.
Yes, X. campestris (Roux et al., 2015), X. citri
Ralstonia solanacearum (Rs_T3E_Hyp14; Peeters et al., 2013), Erwinia amylovora (Eop3; Nissinen et al., 2007, HopX1Ea; Bocsanczy et al., 2012), Pseudomonas spp.
Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV (2012). HopX1 in Erwinia amylovora functions as an avirulence protein in apple and is regulated by HrpL. J Bacteriol. 194: 553-560. DOI: 10.1128/JB.05065-11.
Guy E, Genissel A, Hajri A, Chabannes M, David P, Carrere S, Lautier M, Roux B, Boureau T, Arlat M, Poussier S, Noël LD (2013). Natural genetic variation of Xanthomonas campestris pv. campestris pathogenicity on Arabidopsis revealed by association and reverse genetics. mBio 4: e00538-12. DOI: 10.1128/mBio.00538-12. Erratum in: MBio (2013) 4: e00978-13.
Nissinen RM, Ytterberg AJ, Bogdanove AJ, Van Wijk KJ, Beer SV (2007). Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol. Plant Pathol. 8: 55-67. DOI: 10.1111/j.1364-3703.2006.00370.x.
Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 14: 859. DOI: 10.1186/1471-2164-14-859.
Roux B, Bolot S, Guy E, Denancé N, Lautier M, Jardinaud MF, Fischer-Le Saux M, Portier P, Jacques MA, Gagnevin L, Pruvost O, Lauber E, Arlat M, Carrère S, Koebnik R, Noël LD (2015). Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics 16: 975. DOI: 10.1186/s12864-015-2190-0.
Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Pühler A (2008). The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol. 134: 33-45. DOI: https://doi.org/10.1016/j.jbiotec.2007.12.013.
This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).