Author: Matthieu Arlat
Internal reviewer: Joana Costa
Class: XopAL
Family: XopAL1
Prototype: XC_2995/XopXccE1 (Xanthomonas campestris pv. campestris; strain 8004) (Jiang et al., 2009)
GenBank ID: AAY50043.1 (332 aa)
RefSeq ID: WP_274360846.1 (305 aa)
3D structure: Unknown
XopAL was first identified in X. campestris pv. campestris (Xcc) strain 8004 as a candidate type III secreted (T3S)-effector due to the presence of a plant-inducible promoter (PIP) box in its gene, XC_2995 (Jiang et al., 2009).
Construction of a chimeric protein between the N-terminal region of XC_2995 (XopAL1) and a truncated AvrBS1 protein (AvrBS159-445). The chimeric gene was introduced by conjugation into Xcc8004 ∆AvrBS1 mutant or derivative of this strain mutated in hrpF or hpaB genes. The transconjugants were tested for HR elicitation on pepper ECW-10R (Jiang et al., 2009). These experiments suggest that the N-terminal part of XopAL1 is able to allow the translocation of the chimeric protein into pepper cells in an Hrp-dependent manner.
The expression of xopAL1 gene was shown to be positively regulated by hrpX (Jiang et al., 2009) and hrpG (Jiang et al., 2009; Roux et al., 2015). Presence of a PIP box (Jiang et al., 2009; Bogdanove et al., 2013; Roux et al., 2015).
XopAL1Xcc8004 is required for full virulence and growth of X. campestris pv. campestris in the host plant Chinese radish (Jiang et al., 2009).
Unknown.
Unknown.
Unknown.
Yes, X. campestris, X. translucens, X. arboricola (Cesbron et al., 2015)
Acidovorax spp., Ralstonia solanacearum (RipE2; Peeters et al., 2013), Erwinia amylovora (Eop3; Nissinen et al., 2007, HopX1Ea; Bocsanczy et al., 2012), Pseudomonas spp.
Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV (2012). HopX1 in Erwinia amylovora functions as an avirulence protein in apple and is regulated by HrpL. J. Bacteriol. 194: 553-560. DOI: 10.1128/JB.05065-11
Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL (2011). Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J. Bacteriol. 193: 5450-64. DOI: 10.1128/JB.05262-11
Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, Saux MF, Jacques MA (2015). Comparative genomics of pathogenic and nonpathogenic strains of Xanthomonas arboricola unveil molecular and evolutionary events linked to pathoadaptation. Front. Plant Sci. 6:1126. http://10.3389/fpls.2015.01126
Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: 10.1094/MPMI-22-11-1401
Nissinen RM, Ytterberg AJ, Bogdanove AJ, VAN Wijk KJ, Beer SV (2007). Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol. Plant Pathol. 8: 55-67. DOI: 10.1111/j.1364-3703.2006.00370.x
Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 14: 859. DOI: 10.1186/1471-2164-14-859
Roux B, Bolot S, Guy E, Denancé N, Lautier M, Jardinaud MF, Fischer-Le Saux M, Portier P, Jacques MA, Gagnevin L, Pruvost O, Lauber E, Arlat M, Carrère S, Koebnik R, Noël LD (2015). Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics 16: 975. DOI: 10.1186/s12864-015-2190-0
This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).