====== Taxonomy and Diversity of Xanthomonads ====== This data is based on the review by [[https://doi.org/10.3390/microorganisms9040862|Catara et al. (2021]]), focused on the molecular methods for diagnosis, detection, and studies on the diversity of plant pathogenic //Xanthomonas//, concentrating especially on regulated pathogens in the European Union published as a collective effort of the [[https://euroxanth.eu/management/wg1|Working Group 1]] 'Diagnostics & Diversity–Population Structure' from the [[https://euroxanth.eu|EuroXanth]] COST Action CA16107. **Tools for molecular typing of regulated Xanthomonas** ^ Pathogen ^ Fingerprints ^ VNTR/MLVA ^ CRISPR ^ MLSA/MLST ^ | **A1 list** ||||| | //X//. //citri// pv. aurantifolii | NA1 | NA | NA | [[https://doi.org/10.1371/journal.pone.0058474|Mhedbi-Hajri (2013)]] | | //X//. //citri// pv. citri | [[https://doi.org/10.1099/ijs.0.009514-0|Bui Thi Ngoc (2010)]], \\ [[https://doi.org/10.1111/mpp.12019|Escalon (2013)]] | [[https://doi.org/10.1111/j.1755-0998.2008.02242.x|Bui Thi Ngoc (2009)]], \\ [[https://doi.org/10.1111/1462-2920.12369|Vernière (2014)]], \\ [[https://doi.org/10.1371/journal.pone.0098129|Pruvost (2014)]], \\ [[https://doi.org/10.1111/1462-2920.12876|Leduc (2015)]], \\ [[https://doi.org/10.1111/mec.14007|Richard (2017)]], \\ [[https://doi.org/10.1111/eva.12788|Pruvost (2019)]], \\ [[https://doi.org/10.3390/microorganisms9050945|Pruvost (2021)]], \\ [[https://doi.org/10.1111/eva.13451|Pruvost (2022)]] | [[https://doi.org/10.1186/s12864-019-6267-z|Jeong (2019)]], \\ [[https://doi.org/10.3390/microorganisms10091715|Bellander (2022)]], \\ [[https://doi.org/10.1111/ppa.13729|Ibrahim (2023)]], \\ [[https://doi.org/10.1093/femsle/fnae005|Martins (2024)]] | [[https://doi.org/10.1099/ijs.0.009514-0|Bui Thi Ngoc (2010)]], \\ [[https://doi.org/10.1371/journal.pone.0058474|Mhedbi-Hajri (2013)]], \\ [[https://doi.org/10.1094/PHYTO-12-23-0490-R|Okoh (2024)]] | | //X//. //euvesicatoria// pv. allii | [[https://doi.org/10.1094/PHYTO.2004.94.2.184|Gent (2004)]], \\ [[https://doi.org/10.1094/PHYTO-95-0918|Gent (2005)]], \\ [[https://doi.org/10.1094/PHYTO-96-1345|Humeau (2006)]], \\ [[https://doi.org/10.1094/PHYTO-98-8-0919|Picard(2008)]] | [[https://doi.org/10.3390/microorganisms9030536|Vancheva (2021)]] | NA | [[https://doi.org/10.1371/journal.pone.0058474|Mhedbi-Hajri (2013)]] | | //X//. //oryzae// pv. oryzae | [[https://doi.org/10.1094/PHYTO.1997.87.3.302|George (1997)]] | [[https://doi.org/10.1128/AEM.02768-14|Poulin (2015)]] , \\ [[https://doi.org/10.1186/s12284-023-00648-x|Diallo (2023)]] | NA | [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|Hajri (2012)]], \\ [[https://doi.org/10.1094/PHYTO-07-13-0213-R|Wonni (2014)]], \\ [[https://doi.org/10.1111/jam.14813|Sakthivel (2021)]] | | //X//. //oryzae// pv. oryzicola | NA | [[https://doi.org/10.1094/PHYTO-04-12-0078-R|Zhao (2012)]], \\ [[https://doi.org/10.1128/AEM.02768-14|Poulin (2015)]] | NA | [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|Hajri (2012)]], \\ [[https://doi.org/10.1094/PHYTO-04-12-0078-R|Zhao (2012)]] | | **A2 list** ||||| | //X//. //arboricola// pv. corylina | NA | [[https://doi.org/10.1016/j.mimet.2014.02.017|Cesbron (2014)]], \\ [[https://doi.org/10.1128/AEM.00835-15|Essakhi (2015)]] | NA | [[https://doi.org/10.1128/AEM.00835-15|Essakhi (2015)]], \\ [[https://doi.org/10.1128/AEM.00050-15|Fischer-Le Saux (2015)]] | | //X//. //arboricola// pv. juglandis | [[https://doi.org/10.1023/A:1017951406237|Loreti (2001)]], \\ [[https://doi.org/10.1046/j.1439-0434.2001.00628.x|Scortichini (2001)]], \\ [[https://doi.org/10.1111/j.1365-3059.2010.02362.x|Hajri (2010)]] | [[https://doi.org/10.1016/j.mimet.2014.02.017|Cesbron (2014)]], \\ [[https://doi.org/10.1128/AEM.00835-15|Essakhi (2015)]] | NA | [[https://doi.org/10.1128/AEM.00835-15|Essakhi (2015)]], \\ [[https://doi.org/10.1128/AEM.00050-15|Fischer-Le Saux (2015)]] | | //X//. //arboricola// pv. pruni | [[https://doi.org/10.1094/PHYTO-95-1081|Boudon (2005)]] | [[https://doi.org/10.1016/j.mimet.2014.02.017|Cesbron (2014)]], \\ [[https://doi.org/10.1128/AEM.00835-15|Essakhi (2015)]] | NA | [[https://doi.org/10.1094/PHYTO-95-1081|Boudon (2005)]], \\ [[https://doi.org/10.1128/AEM.00835-15|Essakhi (2015)]], \\ [[https://doi.org/10.1128/AEM.00050-15|Fischer-Le Saux (2015)]] | | //X//. //axonopodis// pv. poinsettiicola | NA | NA | NA | [[https://doi.org/10.1094/PDIS-08-14-0867-RE|Rockey (2015)]] | | //X//. //euvesicatoria// pv. euvesicatoria | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]] | [[https://doi.org/10.3390/microorganisms9030536|Vancheva (2021)]] | NA | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]], \\ [[https://doi.org/10.1371/journal.pone.0058474|Mhedbi-Hajri (2013)]], \\ [[https://doi.org/10.1128/AEM.03000-14|Timilsina (2015)]], \\ [[https://doi.org/10.3390/microorganisms710046227|Dhakal (2019)]] | | //X//. //euvesicatoria// pv. perforans | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]] | [[https://doi.org/10.3390/microorganisms9030536|Vancheva (2021)]] | NA | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]], \\ [[https://doi.org/10.1128/AEM.03000-14|Timilsina (2015)]] | | //X//. //fragariae// | [[https://doi.org/10.1128/aem.62.9.3121-3127.1996|Pooler (1996)]], \\ [[https://doi.org/10.1128/AEM.64.10.3961-3965.1998|Roberts (1998)]] | [[https://doi.org/10.1099/mgen.0.000189/29874158/|Gétaz (2018)]] | [[https://doi.org/10.1099/mgen.0.000189/29874158/|Gétaz (2018)]] | [[https://doi.org/10.1099/mgen.0.000189/29874158/|Gétaz (2018)]], \\ [[https://doi.org/10.1094/PDIS-05-23-0933-SC|Wei (2023)]] | | //X//. //hortorum// pv. gardneri | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]] | NA | NA | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]], \\ [[https://doi.org/10.1128/AEM.03000-14|Timilsina (2015)]] | | //X//. //phaseoli// pv. dieffenbachiae | [[https://doi.org/10.1094/PDIS.2004.88.9.980|Khoodoo (2004)]], \\ [[https://doi.org/10.1094/PHYTO-08-12-0191-R|Donahoo (2013)]] | NA | NA | [[https://doi.org/10.1371/journal.pone.0058474|Mhedbi-Hajri (2013)]] | | //X//. //phaseoli// pv. phaseoli, //X//. //citri// pv. fuscans | [[https://doi.org/10.1094/PHYTO.2004.94.6.593|Mkandawire (2004)]] | NA | NA | [[https://doi.org/10.1371/journal.pone.0058474|Mhedbi-Hajri (2013)]] | | //X//. //translucens// pv. translucens | [[https://doi.org/10.1094/PHYTO.1997.87.11.1111|Bragard (1997)]], \\ [[https://doi.org/10.1094/PHYTO-96-0876|Rademaker (2006)]] | NA | NA | [[https://doi.org/10.1094/PHYTO-08-17-0271-R|Curland (2018)]], \\ [[https://doi.org/10.1128/AEM.01518-19|Khojasteh (2019)]], \\ [[https://doi.org/10.1094/PHYTO-04-19-0134-R|Curland (2020]], \\ [[https://doi.org/10.1094/PHYTO-10-22-0381-SA|Hong (2023)]] | | //X//. //vesicatoria// | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]] | NA | NA | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]], \\ [[https://doi.org/10.1128/AEM.03000-14|Timilsina (2015)]], \\ [[https://doi.org/10.3390/microorganisms710046227|Dhakal (2019)]] | 1 NA: not available. ===== References ===== Bellanger N, Dereeper A, Koebnik R (2022). Clustered regularly interspaced short palindromic repeats in //Xanthomonas citri //- witnesses to a global expansion of a bacterial pathogen over time. Microorganisms 10: 1715. DOI: [[http://doi.org/10.3390/microorganisms10091715|10.3390/microorganisms10091715]] Boudon S, Manceau C, Nottéghem JL (2005). Structure and origin of //Xanthomonas arboricola// pv. pruni populations causing bacterial spot of stone fruit trees in Western Europe. Phytopathology 95: 1081-1088. DOI: [[https://doi.org/10.1094/PHYTO-95-1081|10.1094/PHYTO-95-1081]] Bragard C, Singer E, Alizadeh A, Vauterin L, Maraite H, Swings J (1997). //Xanthomonas translucens// from small grains: diversity and phytopathological relevance. Phytopathology 87: 1111-1117. DOI: [[https://doi.org/10.1094/PHYTO.1997.87.11.1111|10.1094/PHYTO.1997.87.11.1111]] Bui Thi Ngoc L, Vernière C, Jouen E, Ah-You N, Lefeuvre P, Chiroleu F, Gagnevin L, Pruvost O. (2010). Amplified fragment length polymorphism and multilocus sequence analysis-based genotypic relatedness among pathogenic variants of //Xanthomonas citri// pv. citri and //Xanthomonas campestris// pv. bilvae. Int. J. Syst. Evol. Microbiol. 60: 515-525. DOI: [[https://doi.org/10.1099/ijs.0.009514-0|10.1099/ijs.0.009514-0]] Bui Thi Ngoc L, Verniere C, Vital K, Guerin F, Gagnevin L, Brisse S, Ah-You N, Pruvost O (2009). Development of 14 minisatellite markers for the citrus canker bacterium, //Xanthomonas citri// pv. citri. Mol. Ecol. Resour. 9: 125-127. DOI: [[https://doi.org/10.1111/j.1755-0998.2008.02242.x|10.1111/j.1755-0998.2008.02242.x]] Catara V, Cubero J, Pothier JF, Bosis E, Bragard C, Đermić E, Holeva MC, Jacques MA, Petter F, Pruvost O, Robène I, Studholme DJ, Tavares F, Vicente JG, Koebnik R, Costa J (2021). Trends in molecular diagnosis and diversity studies for phytosanitary regulated //Xanthomonas//. Microorganisms 9: 862. DOI: [[https://doi.org/10.3390/microorganisms9040862|10.3390/microorganisms9040862]] Cesbron S, Pothier J, Gironde S, Jacques MA, Manceau C (2014). Development of multilocus variable-number tandem repeat analysis (MLVA) for //Xanthomonas arboricola// pathovars. J. Microbiol. Methods 100: 84-90. DOI: [[https://doi.org/10.1016/j.mimet.2014.02.017|10.1016/j.mimet.2014.02.017]] Curland RD, Gao L, Bull CT, Vinatzer BA, Dill-Macky R, Van Eck L, Ishimaru CA (2018). Genetic diversity and virulence of wheat and barley strains of //Xanthomonas translucens// from the Upper Midwestern United States. Phytopathology 108: 443-453. DOI: [[https://doi.org/10.1094/PHYTO-08-17-0271-R|10.1094/PHYTO-08-17-0271-R]] Curland RD, Gao L, Hirsch CD, Ishimaru CA (2020). Localized genetic and phenotypic diversity of //Xanthomonas translucens// associated with bacterial leaf streak on wheat and barley in Minnesota. Phytopathology 110: 257-266. DOI: [[https://doi.org/10.1094/PHYTO-04-19-0134-R|10.1094/PHYTO-04-19-0134-R]] Dhakal U, Dobhal S, Alvarez AM, Arif M (2019). Phylogenetic analyses of xanthomonads causing bacterial leaf spot of tomato and pepper: //Xanthomonas euvesicatoria// revealed homologous populations despite distant geographical distribution. Microorganisms 7: 462. DOI: [[https://doi.org/10.3390/microorganisms7100462|10.3390/microorganisms7100462]] Diallo A, Wonni I, Sicard A, Blondin L, Gagnevin L, Vernière C, Szurek B, Hutin M (2023). Genetic structure and TALome analysis highlight a high level of diversity in Burkinabe //Xanthomonas oryzae// pv. //oryzae// populations. Rice (N Y) 16: 33. DOI: [[https://doi.org/10.1186/s12284-023-00648-x|10.1186/s12284-023-00648-x]] Donahoo RS, Jones JB, Lacy GH, Stromberg VK, Norman DJ (2013). Genetic analyses of //Xanthomonas axonopodis// pv. dieffenbachiae strains reveal distinct phylogenetic groups. Phytopathology 103: 237-244. DOI: [[https://doi.org/10.1094/PHYTO-08-12-0191-R|10.1094/PHYTO-08-12-0191-R]] Escalon A, Javegny S, Vernière C, Noël LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L (2013). Variations in type III effector repertoires, pathological phenotypes and host range of //Xanthomonas citri// pv. citri pathotypes. Mol. Plant Pathol. 14: 483-496. DOI: [[https://doi.org/10.1111/mpp.12019|10.1111/mpp.12019]] Essakhi S, Cesbron S, Fischer-Le Saux M, Bonneau S, Jacques MA, Manceau C (2015). Phylogenetic and variable-number tandem-repeat analyses identify nonpathogenic //Xanthomonas arboricola// lineages lacking the canonical type III secretion system. Appl. Environ. Microbiol. 81: 5395-5410. DOI: [[https://doi.org/10.1128/AEM.00835-15|10.1128/AEM.00835-15]] Fischer-Le Saux M, Bonneau S, Essakhi S, Manceau C, Jacques MA (2015). Aggressive emerging pathovars of //Xanthomonas arboricola// represent widespread epidemic clones distinct from poorly pathogenic strains, as revealed by multilocus sequence typing. Appl. Environ. Microbiol. 81: 4651-4668. DOI: [[https://doi.org/10.1128/AEM.00050-15|10.1128/AEM.00050-15]] Gent DH, Al-Saadi A, Gabriel DW, Louws FJ, Ishimaru CA, Schwartz HF (2005). Pathogenic and genetic relatedness among //Xanthomonas axonopodis// pv. allii and other pathovars of X. axonopodis. Phytopathology 95: 918-925. DOI: [[https://doi.org/10.1094/PHYTO-95-0918|10.1094/PHYTO-95-0918]] Gent DH, Schwartz HF, Ishimaru CA, Louws FJ, Cramer RA, Lawrence CB (2004). Polyphasic characterization of //Xanthomonas// strains from onion. Phytopathology 94: 184-195. DOI: [[https://doi.org/10.1094/PHYTO.2004.94.2.184|10.1094/PHYTO.2004.94.2.184]] George ML, Bustamam M, Cruz WT, Leach JE, Nelson RJ (1997). Movement of //Xanthomonas oryzae// pv. oryzae in Southeast Asia detected using PCR-based DNA fingerprinting. Phytopathology 87: 302-309. DOI: [[https://doi.org/10.1094/PHYTO.1997.87.3.302|10.1094/PHYTO.1997.87.3.302]] Gétaz M, Krijger M, Rezzonico F, Smits THM, van der Wolf JM, Pothier JF (2018). Genome-based population structure analysis of the strawberry plant pathogen //Xanthomonas fragariae// reveals two distinct groups that evolved independently before its species description. Microb. Genom. 4: e000189. DOI: [[https://doi.org/10.1099/mgen.0.000189|10.1099/mgen.0.000189]] Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of //Xanthomonas oryzae//. Mol. Plant Pathol. 13: 288-302. DOI: [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|10.1111/j.1364-3703.2011.00745.x]] Hajri A, Meyer D, Delort F, Guillaumès J, Brin C, Manceau C (2010). Identification of a genetic lineage within //Xanthomonas arboricola// pv. juglandis as the causal agent of vertical oozing canker of Persian (English) walnut in France. Plant Pathol. 59: 1014-1022. DOI: [[https://doi.org/10.1111/j.1365-3059.2010.02362.x|10.1111/j.1365-3059.2010.02362.x]] Hamza AA, Robène-Soustrade I, Jouen E, Gagnevin L, Lefeuvre P, Chiroleu F, Pruvost O (2010). Genetic and pathological diversity among //Xanthomonas// strains responsible for bacterial spot on tomato and pepper in the Southwest Indian Ocean Region. Plant Dis. 94: 993-999. DOI: [[https://doi.org/10.1094/PDIS-94-8-0993|10.1094/PDIS-94-8-0993]] Hamza AA, Robene-Soustrade I, Jouen E, Lefeuvre P, Chiroleu F, Fisher-Le Saux M, Gagnevin L, Pruvost O (2012). MultiLocus Sequence Analysis- and Amplified Fragment Length Polymorphism-based characterization of xanthomonads associated with bacterial spot of tomato and pepper and their relatedness to //Xanthomonas// species. Syst. Appl. Microbiol. 35: 183-190. DOI: [[https://doi.org/10.1016/j.syapm.2011.12.005|10.1016/j.syapm.2011.12.005]] Hong E, Bankole I, Zhao B, Shi G, Buck J, Feng J, Curland RD, Baldwin TT, Chapara VR, Liu Z (2023). DNA markers, pathogenicity test and multilocus sequence analysis to differentiate and characterize cereal specific //Xanthomonas translucens// strains. Phytopathology 113: 2062-2072. DOI: [[https://doi.org/10.1094/PHYTO-10-22-0381-SA|10.1094/PHYTO-10-22-0381-SA]] Humeau L, Roumagnac P, Picard Y, Robène-Soustrade I, Chiroleu F, Gagnevin L, Pruvost O (2006). Quantitative and molecular epidemiology of bacterial blight of onion in seed production fields. Phytopathology 96: 1345-1354. DOI: [[https://doi.org/10.1094/PHYTO-96-1345|10.1094/PHYTO-96-1345]] Ibrahim YE, Widyawan A, Olivier P, Sharafaddin AH, Karine B, Al‐Saleh MA (2023). Characterization of //Xanthomonas citri// pv. //citri// from the western and south-western regions of Saudi Arabia based on CRISPR typing. Plant Pathol. 72: 1149-1159. DOI: [[https://doi.org/10.1111/ppa.13729|10.1111/ppa.13729]] Jeong K, Muñoz-Bodnar A, Arias Rojas N, Poulin L, Rodriguez-R LM, Gagnevin L, Vernière C, Pruvost O, Koebnik R (2019). CRISPR elements provide a new framework for the genealogy of the citrus canker pathogen //Xanthomonas citri// pv. citri. BMC Genomics 20: 917. DOI: [[https://doi.org/10.1186/s12864-019-6267-z|10.1186/s12864-019-6267-z]] Khojasteh M, Taghavi SM, Khodaygan P, Hamzehzarghani H, Chen G, Bragard C, Koebnik R, Osdaghi E (2019). Molecular typing reveals high genetic diversity of //Xanthomonas translucens// strains infecting small-grain cereals in Iran. Appl. Environ. Microbiol. 85: e01518-19. DOI: [[https://doi.org/10.1128/AEM.01518-19|10.1128/AEM.01518-19]] Khoodoo MHR, Jaufeerally-Fakim Y (2004). RAPD-PCR fingerprinting and Southern analysis of //Xanthomonas axonopodis// pv. dieffenbachiae strains isolated from different aroid hosts and locations. Plant Dis. 88: 980-988. DOI: [[http://doi.org/10.1094/PDIS.2004.88.9.980|10.1094/PDIS.2004.88.9.980]] Leduc A, Traoré YN, Boyer K, Magne M, Grygiel P, Juhasz CC, Boyer C, Guerin F, Wonni I, Ouedraogo L, Vernière C, Ravigné V, Pruvost O (2015). Bridgehead invasion of a monomorphic plant pathogenic bacterium: //Xanthomonas citri// pv. citri, an emerging citrus pathogen in Mali and Burkina Faso. Environ. Microbiol. 17: 4429-4442. DOI: [[https://doi.org/10.1111/1462-2920.12876|10.1111/1462-2920.12876]] Loreti S, Gallelli A, Belisario A, Wajnberg E, Corazza L (2001). Investigation of genomic variability of //Xanthomonas arboricola// pv. juglandis by AFLP analysis. Eur. J. Plant Pathol. 107: 583-591. DOI:[[https://doi.org/10.1023/A:1017951406237|10.1023/A:1017951406237]] Martins PMM, Granato LM, Morgan T, Nalin JL, Takita MA, Alfenas-Zerbini P, de Souza AA (2024). Analysis of CRISPR-Cas loci distribution in //Xanthomonas citri// and its possible control by the quorum sensing system. FEMS Microbiol. Lett. 371: fnae005. DOI: [[https://doi.org/10.1093/femsle/fnae005|10.1093/femsle/fnae005]] Mhedbi-Hajri N, Hajri A, Boureau T, Darrasse A, Durand K, Brin C, Fischer-Le Saux M, Manceau C, Poussier S, Pruvost O, Lemaire C, Jacques MA (2013). Evolutionary history of the plant pathogenic bacterium //Xanthomonas axonopodi//s. PLoS One 8: e58474. DOI: [[https://doi.org/10.1371/journal.pone.0058474|10.1371/journal.pone.0058474]] Mkandawire AB, Mabagala RB, Guzmán P, Gepts P, Gilbertson RL (2004). Genetic diversity and pathogenic variation of common blight bacteria (//Xanthomonas campestris// pv. phaseoli and //X. campestris// pv. phaseoli var. fuscans) suggests pathogen coevolution with the common bean. Phytopathology 94: 593-603. DOI: [[https://doi.org/10.1094/PHYTO.2004.94.6.593|10.1094/PHYTO.2004.94.6.593]] Okoh EB, Payne M, Lan R, Riegler M, Chapman T, Bogema D (2024). A multilocus sequence typing scheme for rapid identification of //Xanthomonas citri// based on whole genome sequencing data. Phytopathology 114: 1480-1489 . DOI: [[https://doi.org/10.1094/PHYTO-12-23-0490-R|10.1094/PHYTO-12-23-0490-R]] Picard Y, Roumagnac P, Legrand D, Humeau L, Robène-Soustrade I, Chiroleu F, Gagnevin L, Pruvost O (2008). Polyphasic characterization of// Xanthomonas axonopodis// pv. allii associated with outbreaks of bacterial blight on three //Allium// species in the Mascarene archipelago. Phytopathology 98: 919-925. DOI: [[https://doi.org/10.1094/PHYTO-98-8-0919|10.1094/PHYTO-98-8-0919]] Pooler MR, Ritchie DF, Hartung JS (1996). Genetic relationships among strains of //Xanthomonas fragariae// based on random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and enterobacterial repetitive intergenic consensus PCR data and generation of multiplexed PCR primers useful for the identification of this phytopathogen. Appl. Environ. Microbiol. 62: 3121-3127. DOI: [[https://doi.org/10.1128/aem.62.9.3121-3127.1996|10.1128/aem.62.9.3121-3127.1996]] Poulin L, Grygiel P, Magne M, Gagnevin L, Rodriguez-R LM, Forero Serna N, Zhao S, El Rafii M, Dao S, Tekete C, Wonni I, Koita O, Pruvost O, Verdier V, Vernière C, Koebnik R (2015). New multilocus variable-number tandem-repeat analysis tool for surveillance and local epidemiology of bacterial leaf blight and bacterial leaf streak of rice caused by //Xanthomonas oryzae//. Appl. Environ. Microbiol. 81: 688-698. DOI: [[https://doi.org/10.1128/AEM.02768-14|10.1128/AEM.02768-14]] Pruvost O, Boyer K, Ravigné V, Richard D, Vernière C (2019). Deciphering how plant pathogenic bacteria disperse and meet: Molecular epidemiology of //Xanthomonas citri// pv. citri at microgeographic scales in a tropical area of Asiatic citrus canker endemicity. Evol. Appl. 12: 1523-1538. DOI: [[https://doi.org/10.1111/eva.12788|10.1111/eva.12788]] Pruvost O, Ibrahim YE, Sharafaddin AH, Boyer K, Widyawan A, Al-Saleh MA (2022). Molecular epidemiology of the citrus bacterial pathogen //Xanthomonas citri// pv. //citri// from the Arabian Peninsula reveals a complex structure of specialist and generalist strains. Evol. Appl. 15: 1423-1435. DOI: [[https://doi.org/10.1111/eva.13451|10.1111/eva.13451]] Pruvost O, Magne M, Boyer K, Leduc A, Tourterel C, Drevet C, Ravigné V, Gagnevin L, Guérin F, Chiroleu F, Koebnik R, Verdier V, Vernière C (2014). A MLVA genotyping scheme for global surveillance of the citrus pathogen //Xanthomonas citri// pv. citri suggests a worldwide geographical expansion of a single genetic lineage. PLoS One 9: e98129. DOI: [[https://doi.org/10.1371/journal.pone.0098129|10.1371/journal.pone.0098129]] Pruvost O, Richard D, Boyer K, Javegny S, Boyer C, Chiroleu F, Grygiel P, Parvedy E, Robène I, Maillot-Lebon V, Hamza A, Lobin KK, Naiken M, Vernière C (2021). Diversity and geographical structure of //Xanthomonas citri// pv. citri on Citrus in the South West Indian Ocean Region. Microorganisms 9: 945. DOI: [[https://doi.org/10.3390/microorganisms9050945|10.3390/microorganisms9050945]] Rademaker JL, Norman DJ, Forster RL, Louws FJ, Schultz MH, de Bruijn FJ (2006). Classification and identification of //Xanthomonas translucens// isolates, including those pathogenic to ornamental asparagus. Phytopathology 96: 876-884. DOI: [[https://doi.org/10.1094/PHYTO-96-0876|10.1094/PHYTO-96-0876]] Richard D, Ravigné V, Rieux A, Facon B, Boyer C, Boyer K, Grygiel P, Javegny S, Terville M, Canteros BI, Robène I, Vernière C, Chabirand A, Pruvost O, Lefeuvre P (2017). Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements. Mol. Ecol. 26: 2131-2149. doi: [[https://doi.org/10.1111/mec.14007|10.1111/mec.14007]] Roberts PD, Hodge NC, Bouzar H, Jones JB, Stall RE, Berger RD, Chase AR (1998). Relatedness of strains of //Xanthomonas fragariae// by restriction fragment length polymorphism, DNA-DNA reassociation, and fatty acid analyses. Appl. Environ. Microbiol. 64: 3961-3965. DOI: [[https://doi.org/10.1128/AEM.64.10.3961-3965.1998|10.1128/AEM.64.10.3961-3965.1998]] Rockey W, Potnis N, Timilsina S, Hong JC, Vallad GE, Jones JB, Norman DJ (2015). Multilocus sequence analysis reveals genetic diversity in xanthomonads associated with poinsettia production. Plant Dis. 99: 874-882. DOI: [[https://doi.org/10.1094/PDIS-08-14-0867-RE|10.1094/PDIS-08-14-0867-RE]] Sakthivel K, Kumar A, Gautam RK, Manigundan K, Laha GS, Velazhahan R, Singh R, Yadav IS (2021). Intra-regional diversity of rice bacterial blight pathogen, //Xanthomonas oryzae// pv. oryzae, in the Andaman Islands, India: revelation by pathotyping and multilocus sequence typing. J. Appl. Microbiol. 130: 1259-1272. DOI: [[https://doi.org/10.1111/jam.14813|10.1111/jam.14813]] Scortichini M, Marchesi U, Di Prospero P (2001). Genetic diversity of //Xanthomonas arboricola// pv. juglandis (synonyms: //X. campestris// pv. juglandis; //X. juglandis// pv. juglandis) strains from different geographical areas shown by repetitive polymerase chain reaction genomic fingerprinting. J. Phytopathol. 149: 325-332. DOI: [[https://doi.org/10.1046/j.1439-0434.2001.00628.x|10.1046/j.1439-0434.2001.00628.x]] Timilsina S, Jibrin MO, Potnis N, Minsavage GV, Kebede M, Schwartz A, Bart R, Staskawicz B, Boyer C, Vallad GE, Pruvost O, Jones JB, Goss EM (2015). Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of //Xanthomonas gardneri.// Appl. Environ. Microbiol. 81: 1520-1529. DOI: [[https://doi.org/10.1128/AEM.03000-14|10.1128/AEM.03000-14]] Vancheva T, Bogatzevska N, Moncheva P, Mitrev S, Vernière C, Koebnik R (2021). Molecular epidemiology of //Xanthomonas euvesicatoria// strains from the Balkan Peninsula revealed by a new multiple-locus variable-number tandem-repeat analysis scheme. Microorganisms 9: 536. DOI: [[https://doi.org/10.3390/microorganisms9030536|10.3390/microorganisms9030536]] Vernière C, Bui Thi Ngoc L, Jarne P, Ravigné V, Guérin F, Gagnevin L, Le Mai N, Chau NM, Pruvost O (2014). Highly polymorphic markers reveal the establishment of an invasive lineage of the citrus bacterial pathogen //Xanthomonas citri// pv. //citri// in its area of origin. Environ, Microbiol. 16: 2226-2237. doi: [[https://doi.org/10.1111/1462-2920.12369|10.1111/1462-2920.12369]] Wei F, Liang X, Shi JC, Luo J, Qiu LJ, Li XX, Lu LJ, Wen Y, Feng J (2023). Pan-genomic analysis identifies the Chinese strain as a new subspecies of //Xanthomonas fragariae//. Plant Dis. 108: 45-49. DOI: [[https://doi.org/10.1094/PDIS-05-23-0933-SC|10.1094/PDIS-05-23-0933-SC]] Wonni I, Cottyn B, Detemmerman L, Dao S, Ouedraogo L, Sarra S, Tekete C, Poussier S, Corral R, Triplett L, Koita O, Koebnik R, Leach J, Szurek B, Maes M, Verdier V (2014). Analysis of //Xanthomonas oryzae// pv. oryzicola population in Mali and Burkina Faso reveals a high level of genetic and pathogenic diversity. Phytopathology 104: 520-531. DOI: [[https://doi.org/10.1094/PHYTO-07-13-0213-R|10.1094/PHYTO-07-13-0213-R]] Zhao S, Poulin L, Rodriguez-R LM, Serna NF, Liu SY, Wonni I, Szurek B, Verdier V, Leach JE, He YQ, Feng JX, Koebnik R (2012). Development of a variable number of tandem repeats typing scheme for the bacterial rice pathogen //Xanthomonas oryzae// pv. oryzicola. Phytopathology 102: 948-956. DOI: [[https://doi.org/10.1094/PHYTO-04-12-0078-R|10.1094/PHYTO-04-12-0078-R]]