====== Plant Resistance Genes in Common Bean (//Phaseolus vulgaris// L.) against //Xanthomonas// Infection ====== Author: [[https://www.researchgate.net/profile/Massimiliano_Morelli|Massimiliano Morelli]]\\ Internal reviewer: Rita Fernandes\\ Expert reviewer: **WANTED!** ===== Pathogen: //Xanthomonas axonopodis// pv. //phaseoli// (//Xap//) ===== ==== Resistance gene: //xap-1// ==== === Synonyms === //NA// === Source === Bean cross between breeding line PR0313-58 and cultivar ‘Rosada Nativa’ (Zapata //et al.//, 2011). === Status (identified, mapped, cloned, sequenced) === Located on linkage group 10 (Zapata //et al.//, 2011). === Molecular markers === SCAR marker (Zapata //et al.//, 2011). === Brief description === Dominant resistance gene cosegregating with the SAP6 QTL (Zapata //et al.//, 2011; Singh & Miklas, 2015). ---- ==== Resistance gene: // Phvul.010G128100 // ==== === Synonyms === //NA// === Source === Bean cross between cultivars Longyundou 5 and Longyundou 4 (Zhu //et al.//, 2016) === Status (identified, mapped, cloned, sequenced) === identified on QTL on chromossome Pv10 (Zhu //et al.//, 2016) === Molecular markers === SAP6 (Zhu //et al.//, 2016) === Brief description === One of other ten candidate genes associated with CBB resistance in the qCBB10-1 region (qCBB10-1 / SAP6 locus) that encode proteins involved in defense mechanisms against pathogens (Zhu //et al.//, 2016; Tugume //et al.//, 2019). ---- ===== References ===== Singh SP, Miklas PN (2015). Breeding common bean for resistance to common blight: a review. Crop Sci. 55: 971-984. DOI: [[https://doi.org/10.2135/cropsci2014.07.0502|10.2135/cropsci2014.07.0502]] Tugume JK, Tusiime G, Sekamate AM, Buruchara R, Mukankusi CM (2019). Diversity and interaction of common bacterial blight disease-causing bacteria (//Xanthomonas// spp.) with //Phaseolus vulgaris// L. Crop J. 7: 1-7. DOI: [[https://doi.org/10.1016/j.cj.2018.10.002|10.1016/j.cj.2018.10.002]] Zapata M, Beaver JS, Porch TG (2011). Dominant gene for common bean resistance to common bacterial blight caused by //Xanthomonas axonopodis// pv. //phaseoli//. Euphytica 179: 373-382. DOI: [[https://doi.org/10.1007/s10681-010-0313-x|10.1007/s10681-010-0313-x]] Zhu J, Wu J, Wang L, Blair MW, Zhu Z, Wang S (2016). QTL and candidate genes associated with common bacterial blight resistance in the common bean cultivar Longyundou 5 from China. Crop J. 4: 344-352. DOI: [[https://doi.org/10.1016/j.cj.2016.06.009|10.1016/j.cj.2016.06.009]] ---- ===== Further reading ===== dos Santos Trindade R, Rodrigues R, do Amaral Jr AT, Azeredo Goncalves LS, Figueiredo Daher R, Pombo Sudré C (2012). Critical disease components of common bacterial blight to effectively evaluate resistant genotypes of snap bean. J. Gen. Plant Pathol. 78: 201-206. DOI: [[https://doi.org/10.1007/s10327-012-0374-x|10.1007/s10327-012-0374-x ]] Duncan RW, Singh SP, Gilbertson RL (2011). Interaction of common bacterial blight bacteria with disease resistance quantitative trait loci in common bean. Phytopathology 101: 425-435. DOI: [[https://doi.org/10.1094/PHYTO-03-10-0095|10.1094/PHYTO-03-10-0095]] Foucher J, Ruh M, Briand M, Préveaux A, Barbazange F, Boureau T, Jacques MA, Chen NWG (2022). Improving common bacterial blight phenotyping by using rub inoculation and machine learning: cheaper, better, faster, stronger. Phytopathology 112: 691-699. DOI: [[https://doi.org/10.1094/PHYTO-04-21-0129-R|10.1094/PHYTO-04-21-0129-R]] Foucher J, Ruh M, Préveaux A, Carrère S, Pelletier S, Briand M, Serre RF, Jacques MA, Chen NWG (2020). Common bean resistance to //Xanthomonas// is associated with upregulation of the salicylic acid pathway and downregulation of photosynthesis. BMC Genomics 21: 566. DOI: [[https://doi.org/10.1186/s12864-020-06972-6|10.1186/s12864-020-06972-6]]. Erratum in: BMC Genomics (2020) 21: 657. DOI: [[https://doi.org/10.1186/s12864-020-07043-6|10.1186/s12864-020-07043-6]] Girma F, Fininsa C, Terefe H, Amsalu B (2022). Evaluation of common bean (//Phaseolus vulgaris//) genotypes for resistance to common bacterial blight and angular leaf spot diseases, and agronomic performances. Heliyon 8: e10425. DOI: [[https://doi.org/10.1016/j.heliyon.2022.e10425|10.1016/j.heliyon.2022.e10425]] Monteiro ALR, Chaves FS, Pantaleão ASL, Carneiro PCS, de Souza Carneiro JE, Badel JL (2020). Sources, spectrum, genetics, and inheritance of //Phaseolus vulgaris// resistance against //Xanthomonas citri //pv. //fuscans//. Phytopathology 110: 1428-1436. DOI: [[https://doi.org/10.1094/PHYTO-01-20-0020-R|10.1094/PHYTO-01-20-0020-R]] Osdaghi E, Alizadeh A, Shams-Bakhsh M, Reza Lak M (2009). Evaluation of common bean lines for their reaction to the common bacterial blight pathogen. Phytopathol. Mediterr. 48: 461-468. [[https://oajournals.fupress.net/index.php/pm/article/view/5306|https://oajournals.fupress.net/index.php/pm/article/view/5306]] Osdaghi E, Shams-Bakhsh M, Alizadeh A, Reza Lak M, Hatami Maleki H (2011). Induction of resistance in common bean by //Rhizobium leguminosarum// bv. //phaseoli// and decrease of common bacterial blight. Phytopathol. Mediterr. 50: 45-54. [[https://oajournals.fupress.net/index.php/pm/article/view/5389|https://oajournals.fupress.net/index.php/pm/article/view/5389]] Perry G, Dinatale C, Xie W, Navabi A, Reinprecht Y, Crosby W, Yu K, Shi C, Pauls KP (2013). A comparison of the molecular organization of genomic regions associated with resistance to common bacterial blight in two //Phaseolus vulgaris// genotypes. Front. Plant Sci. 4: 318. DOI: [[https://doi.org/10.3389/fpls.2013.00318|10.3389/fpls.2013.00318]] Shi C, Navabi A, Yu K (2011). Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations. BMC Plant Biol. 11: 52. DOI: [[https://doi.org/10.1186/1471-2229-11-52|10.1186/1471-2229-11-52]] Shi C, Yu K, Xie W, Perry G, Navabi A, Pauls KP, Miklas PN, Fourie D (2012). Development of candidate gene markers associated to common bacterial blight resistance in common bean. Theor. Appl. Genet. 125: 1525-1537. DOI: [[https://doi.org/10.1007/s00122-012-1931-6|10.1007/s00122-012-1931-6]] Simons KJ, Oladzad A, Lamppa R, Maniruzzaman, McClean PE, Osorno JM, Pasche JS (2021). Using breeding populations with a dual purpose: cultivar development and gene mapping - a case study using resistance to common bacterial blight in dry bean (//Phaseolus vulgaris// L.). Front. Plant Sci. 12: 621097. DOI: [[https://doi.org/10.3389/fpls.2021.621097|10.3389/fpls.2021.621097]] Terán H, Jara C, Mahuku G, Beebe S, Singh SP (2012). Simultaneous selection for resistance to five bacterial, fungal, and viral diseases in three Andean × Middle American inter-gene pool common bean populations. Euphytica 189: 283-292. DOI: [[https://doi.org/10.1007/s10681-012-0803-0|10.1007/s10681-012-0803-0]] Vandemark GJ, Fourie D, Miklas PN (2008). Genotyping with real-time PCR reveals recessive epistasis between independent QTL conferring resistance to common bacterial blight in dry bean. Theor. Appl. Genet. 117: 513-522. DOI: [[https://doi.org/10.1007/s00122-008-0795-2|10.1007/s00122-008-0795-2]] Xie W, Yu K, Pauls KP, Navabi A (2012). Application of image analysis in studies of quantitative disease resistance, exemplified using common bacterial blight-common bean pathosystem. Phytopathology 102: 434-442. doi: [[https://doi.org/10.1094/PHYTO-06-11-0175|10.1094/PHYTO-06-11-0175]] ---- ===== Acknowledgements ===== This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).