====== Molecular Methods in Diagnosis and Detection of Regulated Xanthomonads ======
This data is based on the review by [[https://doi.org/10.3390/microorganisms9040862|Catara et al. (2021]]), focused on the molecular methods for diagnosis, detection, and studies on the diversity of plant pathogenic //Xanthomonas//, concentrating especially on regulated pathogens in the European Union published as a collective effort of the [[https://euroxanth.eu/management/wg1|Working Group 1]] 'Diagnostics & Diversity–Population Structure' from the [[https://euroxanth.eu|EuroXanth]] COST Action CA16107.
**Main protocols described for regulated xanthomonads based on amplification of specific target DNAs.**
^ Disease ^ Bacteria ^ Conventional PCR ^ qPCR1 ^ IA2 Methods ^
| Onion bacterial blight | //X. euvesicatoria// pv. //alli// | [[https://doi.org/10.1128/AEM.02697-09|Robène-Soustrade (2010)]] | [[https://doi.org/10.1016/j.mimet.2015.04.017|Robène (2015)]] | NA3 |
| Citrus bacterial canker | //X. citri// pv. //citri// \\ //X. aurantifolii// pathotypes B and C | [[https://doi.org/10.1094/Phyto-86-95|Hartung (1996)]], \\ [[https://doi.org/10.1128/AEM.68.3.1257-1264.2002|Cubero (2002)]], \\ [[https://doi.org/10.1111/j.1365-2672.2005.02787.x|Coletta-Filho (2006)]], \\ [[https://doi.org/10.1016/j.micres.2005.07.005|Suk Park (2006)]], \\ [[https://doi.org/10.1111/j.1365-3059.2010.02390.x|Kositcharoenkul (2011)]], \\ [[https://doi.org/10.7717/peerj.7676|Fonseca (2019)]] | [[https://doi.org/10.1094/PHYTO.2004.94.1.61|Mavrodieva (2004)]], \\ [[https://doi.org/10.1094/PHYTO-95-1333|Cubero (2005)]], \\ [[https://doi.org/10.1186/s12866-020-01972-8|Robène (2020)]] | [[https://doi.org/10.1186/1471-2180-10-176|Rigano (2010)]], \\ [[https://doi.org/10.3390/microorganisms10061153|Webster (2022)]], \\ [[https://doi.org/10.3390/ijms252111590|Sidireddi (2024)]] |
| Bacterial spot of stone fruits, walnut blight, hazelnut blight | //X. arboricola// pvs. //pruni//, //corylina// and //juglandis// | [[https://doi.org/10.1007/s12275-010-0072-3|Park (2010)]], \\ [[https://doi.org/10.1094/PDIS-10-16-1481-RE|Fernandes (2017)]], \\ [[https://doi.org/10.1016/j.mimet.2019.03.003|Jouen (2019)]], \\ [[https://doi.org/10.1007/s42161-020-00505-6|Webber (2020)]], \\ [[https://doi.org/10.3389/fpls.2023.1254107|Kałużna (2023)]] | [[https://doi.org/10.1128/AEM.01593-10|Palacio-Bielsa (2011)]], \\ [[https://doi.org/10.3389/fmicb.2017.00573|Garita-Cambronero (2017)]], \\ [[https://doi.org/10.1094/PDIS-12-18-2253-RE|Martins (2019)]], \\ [[https://doi.org/10.3389/fpls.2023.1254107|Kałużna (2023)]], \\ [[https://doi.org/10.1094/PDIS-01-24-0012-RE|Panth (2024)]], \\ [[https://doi.org/10.1007/s00253-024-13288-y|Sabuquillo (2024)]] | [[https://doi.org/10.1111/j.1365-3059.2012.02654.x|Bühlmann (2013)]], \\ [[https://doi.org/10.5423/PPJ.OA.07.2019.0197|Li (2021)]], \\ [[https://doi.org/10.3389/fpls.2023.1254107|Kałużna (2023)]] |
| Bacterial leaf blight and bacterial leaf streak of rice | //X. oryzae// pvs. //oryzae// and //oryzicola// | [[https://doi.org/10.1007/s002530100641|Sakthivel (2001)]], \\ [[https://pubmed.ncbi.nlm.nih.gov/18852502/|Kang (2008)]], \\ [[https://doi.org/10.1094/PDIS-94-3-0311|Lang (2010)]], \\ [[https://doi.org/10.1094/PDIS-06-10-0399|Cho (2011)]], \\ [[https://doi.org/10.1016/S2095-3119(12)60047-1|Shen (2012)]], \\ [[https://doi.org/10.3389/fmicb.2015.00791|Singhal (2015)]], \\ [[https://doi.org/10.1111/jam.13094|Cui (2016)]] | [[https://doi.org/10.1094/PDIS-06-10-0399|Cho (2011)]], \\ [[https://doi.org/10.1016/j.cropro.2012.04.014|Kang (2012)]], \\ [[https://doi.org/10.18699/VJGB-22-66|Koroleva (2022)]] | [[https://doi.org/10.1128/AEM.00274-14|Lang (2014)]], \\ [[https://doi.org/10.1016/j.bios.2022.114076|Zhu (2022)]], \\ [[https://doi.org/10.1016/j.cropro.2023.106466|Buddhachat (2024)]] |
| Bacterial spot of pepper and tomato | //X. euvesicatoria// pvs. //euvesicatoria// and //perforans//, \\ //X. hortorum// pv. //gardneri//, \\ //X. vesicatoria// | [[https://doi.org/10.1111/j.1472-765X.2009.02690.x|Moretti (2009)]], \\ [[https://doi.org/10.1111/j.1365-2672.2012.05431.x|Araújo (2011)]], \\ [[https://doi.org/10.1007/s10658-013-0225-4|Araújo (2013)]], \\ [[https://doi.org/10.1016/j.cropro.2012.08.008|Beran (2013)]], \\ [[https://doi.org/10.17660/ActaHortic.2009.808.13|Koenraadt (2019)]], \\ [[https://doi.org/10.1016/j.cropro.2019.104978|Pečenka (2020)]], \\ [[https://doi.org/10.5423/PPJ.OA.08.2022.0119|Siddique (2023)]], \\ [[https://doi.org/10.1094/PHYTO-12-22-0479-R|Utami (2023)]] | [[https://doi.org/10.1094/PDIS-09-15-1085-RE|Strayer (2016)]], \\ [[https://doi.org/10.1016/j.cropro.2019.104978|Pečenka (2020)]], \\ [[https://doi.org/10.5423/PPJ.OA.08.2022.0119|Siddique (2023)]], \\ [[https://doi.org/10.1094/PHYTO-12-22-0479-R|Utami (2023)]] | [[https://doi.org/10.1038/s41598-018-32295-4|Larrea-Sarmiento (2018)]], \\ [[https://doi.org/10.1094/PHYTO-03-18-0101-R|Strayer-Scherer (2019)]], \\ [[https://doi.org/10.3390/microorganisms8091301|Stehlíková (2020)]], \\ [[https://doi.org/10.1094/PDIS-05-22-1098-RE|Beran (2023)]], \\ [[https://doi.org/10.5423/PPJ.OA.08.2022.0119|Siddique (2023)]] \\ [[https://doi.org/10.1094/PHYTO-12-23-0481-R|Shymanovich (2024)]] |
| Bacterial angular leaf spot of strawberry | //X. fragariae// | [[https://doi.org/10.17660/ActaHortic.1997.439.136|Hartung (1997)]], \\ [[https://agris.fao.org/agris-search/search.do?recordID=IT2001060012|Cruz (1999)]], \\ [[https://doi.org/10.1016/j.mimet.2004.04.002|Stöger (2004)]], \\ [[https://doi.org/10.1111/j.1365-2338.2005.00812.x|Moltmann (2005)]] | [[https://doi.org/10.1094/PHYTO-98-3-0359|Turechek (2008)]], \\ [[https://doi.org/10.1111/j.1365-3059.2007.01813.x|Vandroemme (2008)]], \\ [[https://doi.org/10.17660/ActaHortic.2009.842.44|Cubero (2009)]] | [[https://doi.org/10.1371/journal.pone.0147122|Wang (2016)]], [[https://doi.org/10.1111/ppa.12665|Gétaz (2017)]], \\ [[https://doi.org/10.1094/PDIS-10-19-2248-RE|Wang (2020)]], \\ [[https://doi.org/10.1111/jph.12900|Immanuel (2020)]] |
| Bacterial blight of anthurium and other aroids | //X. phaseoli// pv. //dieffenbachiae// | [[https://doi.org/10.1007/s10658-005-7062-z|Khoodoo (2005)]], \\ [[https://doi.org/10.1128/AEM.72.2.1072-1078.2006|Robène-Soustrade (2006)]], \\ [[https://doi.org/10.1111/ppa.12083|Chabirand (2014)]] | [[https://doi.org/10.1016/j.mimet.2019.03.003|Jouen (2019)]] | [[https://doi.org/10.1007/s10658-015-0653-4|Jun-Hai (2015)]] |
| Bacterial leaf spot of poinsettia | //X. axonopodis// pv. //poinsetticola// | [[https://doi.org/10.5423/PPJ.OA.04.2015.0049|Back (2015)]] | NA | NA |
| Bacterial leaf streak and black chaff of cereals | //X. translucens// pv. //translucens// | [[https://doi.org/10.1111/j.1365-2338.1995.tb01459.x|Maes (1995)]], \\ [[https://doi.org/10.1094/PHYTO-07-22-0262-SA|Roman-Reyna (2023)]], \\ [[https://doi.org/10.1094/PHYTO-10-22-0381-SA|Hong (2023)]] | [[https://doi.org/10.1094/PDIS-03-22-0574-RE|Sarkes (2022)]], \\ [[https://doi.org/10.1094/PHYTO-01-23-0022-SA|Tambong (2023)]], \\ [[https://doi.org/10.1094/PDIS-05-23-0887-SR|Fu (2023)]], \\ [[https://doi.org/10.1094/PDIS-09-23-1827-RE|Tambong (2024)]] | [[https://doi.org/10.1094/PHYTO-08-16-0286-R|Langlois (2017)]], \\ [[https://doi.org/10.1094/PDIS-03-22-0574-RE|Sarkes (2022)]] |
| Common blight of bean | //X. phaseoli// pv. phaseoli, \\ //X. citri// pv. //fuscans// | [[https://doi.org/10.1094/Phyto-86-361|Audy (1996)]] | NA | [[https://doi.org/10.1094/PDIS-02-19-0325-RE|De Paiva (2020)]] |
1 qPCR: quantitative real-time PCR; 2 IA: isothermal amplification: 3 NA: not applicable.
===== References =====
Araújo ER, Costa JR, Ferreira MASV, Quezado-Duval AM (2012). Simultaneous detection and identification of the //Xanthomonas// species complex associated with tomato bacterial spot using species-specific primers and multiplex PCR. J. Appl. Microbiol. 113: 1479-1490. DOI: [[https://doi.org/10.1111/j.1365-2672.2012.05431.x|10.1111/j.1365-2672.2012.05431.x]]
Araújo ER, Ferreira MASV, Quezado-Duval AM (2013). Specific primers for //Xanthomonas vesicatoria//, a tomato bacterial spot causal agent. Eur. J. Plant Pathol. 137: 5-9. DOI: [[https://doi.org/10.1007/s10658-013-0225-4|10.1007/s10658-013-0225-4]]
Audy P, Braat CE, Saindon G, Huang HC, Laroche A (1996). A rapid and sensitive PCR-based assay for concurrent detection of bacteria causing common and halo blights in bean seed. Phytopathology 86: 361-366. DOI: [[https://doi.org/10.1094/Phyto-86-361|10.1094/Phyto-86-361]]
Back CG, Lee SY, Lee BJ, Yea MC, Kim SM, Kang IK, Cha JS, Jung HY (2015). Development of a species-specific PCR assay for three //Xanthomonas// species, causing bulb and flower diseases, based on their genome sequences. Plant Pathol. J. 31: 212-218. DOI: [[https://doi.org/10.5423/PPJ.OA.04.2015.0049|10.5423/PPJ.OA.04.2015.0049]]
Beran P, Mráz I (2013). Species-specific PCR primers for detection of //Xanthomonas vesicatoria//. Crop. Prot. 43: 213-215. DOI: [[https://doi.org/10.1016/j.cropro.2012.08.008|10.1016/j.cropro.2012.08.008]]
Beran P, Stehlikova D, Cohen SP, Rost M, Beranova K, Curn V (2023). Utilization of a new hundred-genomes pipeline to design a rapid duplex LAMP detection assay for //Xanthomonas euvesicatoria// and //X. vesicatoria// in tomato. Plant Dis. 107: 1822-1828. DOI: [[https://doi.org/10.1094/PDIS-05-22-1098-RE|10.1094/PDIS-05-22-1098-RE]]
Buddhachat K, Ritbamrung O, Inthima P, Ratanasut K, Sujipuli K (2024). Rapid detection of two pathogenically important //Xanthomonas// in rice using a loop-mediated isothermal amplification with lateral flow dipstick (LAMP-LFD). Crop Protection 175: 106466. DOI: [[https://doi.org/10.1016/j.cropro.2023.106466|10.1016/j.cropro.2023.106466]]
Bühlmann A, Pothier JF, Tomlinson JA, Frey JE, Boonham N, Smits THM, Duffy B (2013). Genomics-informed design of loop-mediated isothermal amplification for detection of phytopathogenic //Xanthomonas arboricola// pv. //pruni// at the intraspecific level. Plant Pathol. 62: 475-484. DOI: [[https://doi.org/10.1111/j.1365-3059.2012.02654.x|10.1111/j.1365-3059.2012.02654.x]]
Catara V, Cubero J, Pothier JF, Bosis E, Bragard C, Đermić E, Holeva MC, Jacques MA, Petter F, Pruvost O, Robène I, Studholme DJ, Tavares F, Vicente JG, Koebnik R, Costa J (2021) Trends in molecular diagnosis and diversity studies for phytosanitary regulated //Xanthomonas//. Microorganisms 9: 862. DOI: [[https://doi.org/10.3390/microorganisms9040862|10.3390/microorganisms9040862]]
Chabirand A, Jouen E, Pruvost O, Chiroleu F, Hostachy B, Bergsma-Vlami M, Bianchi G, Cozzolino L, Elphinstone J, Holeva M, Manole F, Martini P, Matoušková H, Minatchy J, Op de Beeck G, Poliakoff F, Sigillo L, Siverio F, Van Vaerenbergh J, Laurentie M, Robène-Soustrade I (2014). Comparative and collaborative studies for the validation of a nested PCR for the detection of //Xanthomonas axonopodis// pv. //dieffenbachiae// from //Anthurium// samples. Plant Pathol. 63: 20-30. DOI: [[https://doi.org/10.1111/ppa.12083|10.1111/ppa.12083]]
Cho MS, Kang MJ, Kim CK, Seol YJ, Hahn JH, Park SC, Hwang DJ, Ahn TY, Park DH, Lim CK, Park DS (2011). Sensitive and specific detection of //Xanthomonas oryzae// pv. //oryzae// by real-time bio-PCR using pathovar-specific primers based on an //rhs //family gene. Plant Dis. 95: 589-594. DOI: [[https://doi.org/10.1094/PDIS-06-10-0399|10.1094/PDIS-06-10-0399]]
Coletta-Filho HD, Takita MA, De Souza AA, Neto JR, Destéfano SAL, Hartung JS, Machado MA (2006). Primers based on the //rpf// gene region provide improved detection of //Xanthomonas axonopodis// pv. //citri// in naturally and artificially infected citrus plants. J. Appl. Microbiol. 100: 279-285. DOI: [[https://doi.org/10.1111/j.1365-2672.2005.02787.x|10.1111/j.1365-2672.2005.02787.x]]
Cruz L, Sousa-Santos M (1999). Optimizing PCR technique for large scale diagnosis of angular leaf spot of strawberry in //Fragaria// plants. Petria 9: 77-80.
Cubero J, Ayllón MA, Gell I, Melgarejo P, De Cal A, Martín-Sánchez PM, Pérez-Jiménez RM, Soria C, Segundo E, Larena I (2009). Detection of strawberry pathogens by real-time PCR. Acta Hortic. 842: 263-266. DOI: [[https://doi.org/10.17660/ActaHortic.2009.842.44|10.17660/ActaHortic.2009.842.44]]
Cubero J, Graham JH (2002). Genetic relationship among worldwide strains of //Xanthomonas// causing canker in citrus species and design of new primers for their identification by PCR. Appl. Environ. Microbiol. 68: 1257-1264. DOI: [[https://doi.org/10.1128/AEM.68.3.1257-1264.2002|10.1128/AEM.68.3.1257-1264.2002]]
Cubero J, Graham JH (2005). Quantitative real-time polymerase chain reaction for bacterial enumeration and allelic discrimination to differentiate //Xanthomonas// strains on citrus. Phytopathology 95: 1333-1340. DOI: [[https://doi.org/10.1094/PHYTO-95-1333|10.1094/PHYTO-95-1333]]
Cui Z, Ojaghian MR, Tao Z, Kakar KU, Zeng J, Zhao W, Duan Y, Vera Cruz CM, Li B, Zhu B, Xie G (2016). Multiplex PCR assay for simultaneous detection of six major bacterial pathogens of rice. J. Appl. Microbiol.120,1357–1367.DOI: [[https://doi.org/10.1111/jam.13094|10.1111/jam.13094]]
De Paiva BAR, Wendland A, Teixeira NC, Ferreira MASV (2020). Rapid detection of //Xanthomonas citri//pv. //fuscans //and //Xanthomonas phaseoli// pv. //phaseoli// in common bean by Loop-Mediated Isothermal Amplification. Plant Dis. 104: 198-203. DOI: [[https://doi.org/10.1094/PDIS-02-19-0325-RE|10.1094/PDIS-02-19-0325-RE]]
Fernandes C, Albuquerque P, Sousa R, Cruz L, Tavares F (2017). Multiple DNA markers for identification of //Xanthomonas arboricola// pv. //juglandis //isolates and its direct detection in plant samples. Plant Dis. 101: 858-865. DOI: [[https://doi.org/10.1094/PDIS-10-16-1481-RE|10.1094/PDIS-10-16-1481-RE]]
Fonseca, NP, Felestrino ÉB, Caneschi WL, Sanchez AB, CordeiroIF, Lemes CGC, Assis RAB, Carvalho FMS, Ferro JA, Varani AM, Belasque J, Setubal JC, Telles GP, Aguena DS, Almeida NF, Moreira LM (2019). Detection and identification of //Xanthomonas// pathotypes associated with citrus diseases using comparative genomics and multiplex PCR. PeerJ 7: e7676. DOI: [[https://doi.org/10.7717/peerj.7676|10.7717/peerj.7676]]
Fu H, Fleitas MC, Sarkes A, Wang L, Yang Y, Zahr K, Harding MW, Feindel D, Kutcher R, Feng J (2024). Detection and differentiation of //Xanthomonas translucens// pathovars //translucens// and //undulosa// from wheat and barley by duplex quantitative PCR. Plant Dis. 108: 270-277. DOI: [[https://doi.org/10.1094/PDIS-05-23-0887-SR|10.1094/PDIS-05-23-0887-SR]]
Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J (2017). Pan-genomic analysis permits differentiation of virulent and non-virulent strains of //Xanthomonas arboricola// that cohabit //Prunus// spp. and elucidate bacterial virulence factors. Front. Microbiol. 8: 573. DOI: [[https://doi.org/10.3389/fmicb.2017.00573|10.3389/fmicb.2017.00573]]
Gétaz M, Bühlmann A, Schneeberger PHH, Van Malderghem C, Duffy B, Maes M, Pothier JF, Cottyn B (2017). A diagnostic tool for improved detection of //Xanthomonas fragariae// using a rapid and highly specific LAMP assay designed with comparative genomics. Plant Pathol. 66: 1094-1102. DOI: [[https://doi.org/10.1111/ppa.12665|10.1111/ppa.12665]]
Hartung J, Pruvost OP, Villemot I, Alvarez A (1996). Rapid and sensitive colorimetric detection of //Xanthomonas axonopodis// pv. //citri// by immunocapture and a nested polymerase chain reaction assay. Phytopathology 86: 95. DOI: [[https://doi.org/10.1094/Phyto-86-95|10.1094/Phyto-86-95]]
Hartung JS, Pooler MR (1997). Immunocapture and multiplexed-PCR assay for //Xanthomonas fragariae//, causal agent of angular leafspot disease. Int. Soc. Hortic. Sci. 439: 821-828. DOI: [[https://doi.org/10.17660/ActaHortic.1997.439.136|10.17660/ActaHortic.1997.439.136]]
Hong E, Bankole I, Zhao B, Shi G, Buck J, Feng J, Curland RD, Baldwin TT, Chapara VR, Liu Z (2023). DNA markers, pathogenicity test and multilocus sequence analysis to differentiate and characterize cereal specific //Xanthomonas translucens// strains. Phytopathology 113: 2062-2072. DOI: [[https://doi.org/10.1094/PHYTO-10-22-0381-SA|10.1094/PHYTO-10-22-0381-SA]]
Immanuel T, Taylor R, Keeling S, Brosnahan C, Alexander B (2020). Discrimination between viable and dead //Xanthomonas fragariae //in strawberry using viability PCR. J. Phytopathol. 168: 363-373. DOI: [[https://doi.org/10.1111/jph.12900|10.1111/jph.12900]]
Jouen E, Chiroleu F, Maillot-Lebon V, Chabirand A, Merion S, Boyer C, Pruvost O, Robène I (2019). A duplex quantitative real-time PCR assay for the detection and quantification of //Xanthomonas phaseoli// pv. //dieffenbachiae //from diseased and latently infected anthurium tissue. J. Microbiol. Methods 161: 74-83. DOI: [[https://doi.org/10.1016/j.mimet.2019.03.003|j.mimet.2019.03.003]]
Jun-Hai N, Yue-Rong G, Jun-Mei Y, Qing-Yun L, Guang-Sui Y, Cun W, Yu R (2015). Development and evaluation of a loop-mediated isothermal amplification assay for rapid detection of bacterial blight pathogen (//Xanthomonas axonopodis// pv. //dieffenbachiae//) in anthurium. Eur. J. Plant Pathol. 142: 801-813. DOI: [[https://doi.org/10.1007/s10658-015-0653-4|10.1007/s10658-015-0653-4]]
Kałużna M, Prokić A, Obradović A, Weldon WA, Stockwell VO, Pothier JF (2023). Specific and sensitive detection tools for //Xanthomonas arboricola// pv. corylina, the causal agent of bacterial blight of hazelnut, developed with comparative genomics. Front. Plant Sci. 14: 1254107. DOI: [[https://doi.org/10.3389/fpls.2023.1254107|10.3389/fpls.2023.1254107]]
Kang MJ, Kim MH, Hwang DJ, Cho MS, Seol Y, Hahn JH, Ryu S, Park DS (2012). Quantitative in planta PCR assay for specific detection of //Xanthomonas oryzae// pv. //oryzicola //using putative membrane protein based primer set. Crop. Prot. 40: 22-27. DOI: [[https://doi.org/10.1016/j.cropro.2012.04.014|10.1016/j.cropro.2012.04.014]]
Kang MJ, Shim JK, Cho MS, Seol YJ, Hahn JH, Hwang DJ, Park DS (2008). Specific detection of //Xanthomonas oryzae// pv. //oryzicola //in infected rice plant by use of PCR assay targeting a membrane fusion protein gene. J. Microbiol. Biotechnol. 18: 1492-1495. PMID: [[https://pubmed.ncbi.nlm.nih.gov/18852502/|18852502]]
Khoodoo MHR, Sahin F, Jaufeerally-Fakim Y (2005). Sensitive detection of //Xanthomonas axonopodis// pv. //dieffenbachiae// on //Anthurium andreanum// by immunocapture-PCR (IC-PCR) using primers designed from sequence characterized amplified regions (SCAR) of the blight pathogen. Eur. J. Plant Pathol. 112: 379-390. DOI: [[https://doi.org/10.1007/s10658-005-7062-z|10.1007/s10658-005-7062-z]]
Koenraadt H, van Betteray B, Germain R, Hiddink G, Jones JB, Oosterhof J (2009). Development of specific primers for the molecular detection of bacterial spot of pepper and tomato. Acta Hortic. 808: 99-102. DOI: [[https://doi.org/10.17660/ActaHortic.2009.808.13|10.17660/ActaHortic.2009.808.13]]
Koroleva ML, Blinova SA, Shvartsev AA, Kurochkin VE, Alekseev YI (2022). Molecular genetic detection and differentiation of //Xanthomonas oryzae// pv. //oryzicola//, bacterial leaf streak agents of rice. Vavilovskii Zhurnal Genet. Selektsii. 26: 544-552. DOI: [[https://doi.org/10.18699/VJGB-22-66|10.18699/VJGB-22-66]]
Kositcharoenkul N, Chatchawankanphanich O, Bhunchoth A, Kositratana W (2011). Detection of //Xanthomonas citri// subsp. //citri// from field samples using single-tube nested PCR. Plant Pathol. 60: 436-442. DOI: [[https://doi.org/10.1111/j.1365-3059.2010.02390.x|10.1111/j.1365-3059.2010.02390.x]]
Lang JM, Hamilton JP, Diaz MGQ, Van Sluys MA, Burgos MRG, Vera Cruz CM, Buell CR, Tisserat NA, Leach JE (2010). Genomics-based diagnostic marker development for //Xanthomonas oryzae// pv. //oryzae //and //X. oryzae// pv. //oryzicola//. Plant Dis. 94: 311-319. DOI: [[https://doi.org/10.1094/PDIS-94-3-0311|10.1094/PDIS-94-3-0311]]
Lang JM, Langlois P, Nguyen MHR, Triplett LR, Purdie L, Holton TA, Djikeng A, Vera Cruz CM, Verdier V, Leach JE (2014). Sensitive detection of //Xanthomonas oryzae// pathovars //oryzae// and //oryzicola//by loop-mediated isothermal amplification. Appl. Environ. Microbiol. 80: 4519-4530. DOI: [[https://doi.org/10.1128/AEM.00274-14|10.1128/AEM.00274-14]]
Langlois PA, Snelling J, Hamilton JP, Bragard C, Koebnik R, Verdier V, Triplett LR, Blom J, Tisserat NA, Leach JE (2017). Characterization of the //Xanthomonas translucens// complex using draft genomes, comparative genomics, phylogenetic analysis, and diagnostic LAMP assays. Phytopathology 107: 519-527. DOI: [[https://doi.org/10.1094/PHYTO-08-16-0286-R|10.1094/PHYTO-08-16-0286-R]]
Larrea-Sarmiento A, Dhakal U, Boluk G, Fatdal L, Alvarez A, Strayer-Scherer A, Paret M, Jones J, Jenkins D, Arif M (2018). Development of a genome-informed loop-mediated isothermal amplification assay for rapid and specific detection of //Xanthomonas euvesicatoria//. Sci. Rep. 8: 14298. DOI: [[https://doi.org/10.1038/s41598-018-32295-4|10.1038/s41598-018-32295-4]]
Li W, Lee SY, Back CG, Ten LN, Jung HY (2019). Loop-mediated isothermal amplification for the detection of //Xanthomonas arboricola// pv. //pruni// in peaches. Plant Pathol. J. 35: 635-643. DOI: [[https://doi.org/10.5423/PPJ.OA.07.2019.0197|10.5423/PPJ.OA.07.2019.0197]]
Maes M, Garbeva P (1995). Development of a PCR-based detection method for //Xanthomonas campestris// pv. //translucens//. EPPO Bull. 25: 203-209. DOI: [[https://doi.org/10.1111/j.1365-2338.1995.tb01459.x|10.1111/j.1365-2338.1995.tb01459.x]]
Martins L, Fernandes C, Albuquerque P, Tavares F (2019). Assessment of //Xanthomonas arboricola// pv. //juglandis// bacterial load in infected walnut fruits by quantitative PCR. Plant Dis. 103: 2577-2586. DOI: [[https://doi.org/10.1094/PDIS-12-18-2253-RE|10.1094/PDIS-12-18-2253-RE]]
Mavrodieva V, Levy L, Gabriel DW (2004). Improved sampling methods for real-time polymerase chain reaction diagnosis of citrus canker from field samples. Phytopathology 94: 61-68. DOI: [[https://doi.org/10.1094/PHYTO.2004.94.1.61|10.1094/PHYTO.2004.94.1.61]]
Moltmann E, Zimmermann C (2005). Detection of //Xanthomonas fragariae// in symptomless strawberry plants by nested PCR. EPPO Bull. 35: 53-54. DOI: [[https://doi.org/10.1111/j.1365-2338.2005.00812.x|10.1111/j.1365-2338.2005.00812.x]]
Moretti C, Amatulli MT, Buonaurio R (2009). PCR-based assay for the detection of //Xanthomonas euvesicatoria// causing pepper and tomato bacterial spot. Lett. Appl. Microbiol. 49: 466-471. DOI: [[https://doi.org/10.1111/j.1472-765X.2009.02690.x|10.1111/j.1472-765X.2009.02690.x]]
Palacio-Bielsa A, Cubero J, Cambra MA, Collados R, Berruete IM, López MM (2011). Development of an efficient real-time quantitative PCR protocol for detection of //Xanthomonas arboricola// pv. //pruni// in //Prunus// species. Appl. Environ. Microbiol. 77: 89-97. DOI: [[https://doi.org/10.1128/AEM.01593-10|10.1128/AEM.01593-10]]
Panth M, Noh E, Schnabel G, Wang H (2024). Development of a long amplicon PMA-qPCR assay for detection of viable //Xanthomonas arboricola// pv. //pruni// cells in peach trees. Plant Dis. 108: 2190-2196. DOI: [[https://doi.org/10.1094/PDIS-01-24-0012-RE|10.1094/PDIS-01-24-0012-RE]]
Park SY, Lee YS, Koh YJ, Hur JS, Jung JS (2010). Detection of //Xanthomonas arboricola// pv. //pruni //by PCR using primers based on DNA sequences related to the //hrp// genes. J. Microbiol. 48: 554-558. DOI: [[https://doi.org/10.1007/s12275-010-0072-3|10.1007/s12275-010-0072-3]]
Pečenka J, Kocanová M, Baránek M, Gazdík F, Ragasová L, Peňázová E, Ĉechová J, Beran P, Eichmeier A (2020). Species-specific PCR primers for the detection of poorly distinguishable //Xanthomonas euvesicatoria//. Crop. Prot. 127: 104978. DOI: [[https://doi.org/10.1016/j.cropro.2019.104978|10.1016/j.cropro.2019.104978]]
Rigano LA, Marano MR, Castagnaro AP, Do Amaral AM, Vojnov AA (2010). Rapid and sensitive detection of Citrus Bacterial Canker by loop-mediated isothermal amplification combined with simple visual evaluation methods. BMC Microbiol. 10: 176. DOI: [[https://doi.org/10.1186/1471-2180-10-176|10.1186/1471-2180-10-176]]
Robène I, Perret M, Jouen E, Escalon A, Maillot MV, Chabirand A, Moreau A, Laurent A, Chiroleu F, Pruvost O (2015). Development and validation of a real-time quantitative PCR assay to detect //Xanthomonas axonopodis// pv. //allii// from onion seed. J. Microbiol. Methods. 114: 78-86. DOI: [[https://doi.org/10.1016/j.mimet.2015.04.017|10.1016/j.mimet.2015.04.017]]
Robène I, Maillot-Lebon V, Chabirand A, Moreau A, Becker N, Moumène A, Rieux A, Campos P, Gagnevin L, Gaudeul M, Baider C, Chiroleu F, Pruvost O (2020). Development and comparative validation of genomic-driven PCR-based assays to detect //Xanthomonas citri// pv. //citri// in citrus plants. BMC Microbiol. 20: 296. DOI: [[https://doi.org/10.1186/s12866-020-01972-8|10.1186/s12866-020-01972-8]]
Robène-Soustrade I, Laurent P, Gagnevin L, Jouen E, Pruvost O (2006). Specific detection of //Xanthomonas axonopodis// pv. //dieffenbachiae// in anthurium (//Anthurium andreanum//) tissues by nested PCR. Appl. Environ. Microbiol. 72: 1072-1078. DOI: [[https://doi.org/10.1128/AEM.72.2.1072-1078.2006|10.1128/AEM.72.2.1072-1078.2006]]
Robène-Soustrade I, Legrand D, Gagnevin L, Chiroleu F, Laurent A, Pruvost O (2020). Multiplex nested PCR for detection of //Xanthomonas axonopodis// pv. //allii// from onion seeds. Appl. Environ. Microbiol. 76: 2697-2703. DOI: [[https://doi.org/10.1128/AEM.02697-09|10.1128/AEM.02697-09]]
Roman-Reyna V, Curland RD, Velez-Negron Y, Ledman KE, Gutierrez Castillo DEE, Beutler J, Butchacas J, Brar G, Roberts R, Dill-Macky R, Jacobs J (2023). Development of genome-driven, lifestyle-informed markers for identification of the cereal-infecting pathogens //Xanthomonas translucens// pathovars //undulosa// and //translucens//. Phytopathology 113: 2110-2118. DOI: [[https://doi.org/10.1094/PHYTO-07-22-0262-SA|10.1094/PHYTO-07-22-0262-SA]]
Sabuquillo P, Berruete IM, Cubero J, Palacio-Bielsa A (2024). A reliable qPCR technique for detecting viable //Xanthomonas arboricola// pv. //pruni// cells. Appl. Microbiol. Biotechnol. 108: 472. DOI: [[https://doi.org/10.1007/s00253-024-13288-y|10.1007/s00253-024-13288-y]]
Sakthivel N, Mortensen CN, Mathur SB (2001). Detection of //Xanthomonas oryzae// pv. //oryzae// in artificially inoculated and naturally infected rice seeds and plants by molecular techniques. Appl. Microbiol. Biotechnol. 56: 435-441. DOI: [[https://doi.org/10.1007/s002530100641|10.1007/s002530100641]]
Sarkes A, Yang Y, Dijanovic S, Fu H, Zahr K, Harding MW, Feindel D, Feng J (2022). Detection of //Xanthomonas translucens// pv. //undulosa//, pv. //translucens//, and pv. //secalis// by quantitative PCR. Plant Dis. 106: 2876-2883. DOI: [[https://doi.org/10.1094/PDIS-03-22-0574-RE|10.1094/PDIS-03-22-0574-RE]]
Shen YP, Zou LF, Li YR, Zou HS, Liu XL, Chen GY (2012). Xoryp_08180 of //Xanthomonas oryzae// pv. //oryzicola//, encoding a hypothetical protein, is regulated by HrpG and HrpX and required for full virulence in rice. J. Integr. Agric. 11: 600-610. DOI: [[https://doi.org/10.1016/S2095-3119|10.1016/S2095-3119]]
Shymanovich T, Saville AC, Paul R, Wei Q, Ristaino JB (2024). Rapid detection of viral, bacterial, fungal, and oomycete pathogens on tomato with microneedles, LAMP on a microfluidic chip, and smartphone device. Phytopathology, in press. DOI: [[https://doi.org/10.1094/PHYTO-12-23-0481-R|10.1094/PHYTO-12-23-0481-R]]
Sidireddi SH, Park JW, Gonzalez M, Sétamou M, Kunta M (2024). Loop-mediated isothermal amplification assay for the detection of citrus canker causing bacterial variant, //Xanthomonas citri// pv. //citri// Aw strain. Int. J. Mol. Sci. 25: 11590. DOI: [[https://doi.org/10.3390/ijms252111590|10.3390/ijms252111590]]
Siddique F, Mingxiu Y, Xiaofeng X, Zhe N, Younis H, Lili P, Junhua Z (2023). Comparative genomic analysis and rapid molecular detection of //Xanthomonas euvesicatoria// using unique ATP-dependent DNA helicase recQ, hrpB1, and hrpB2 genes isolated from //Physalis pubescens// in China. Plant Pathol. J. 39: 191-206. DOI: [[https://doi.org/10.5423/PPJ.OA.08.2022.0119|10.5423/PPJ.OA.08.2022.0119]]
Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015). MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 6: 791. DOI: [[https://doi.org/10.3389/fmicb.2015.00791|10.3389/fmicb.2015.00791]]
Stehlíková D, Beran P, Cohen SP, Curn V (2020). Development of real-time and colorimetric loop mediated isothermal amplification assay for detection of //Xanthomonas gardneri//. Microorganisms 8: 1301. DOI: [[https://doi.org/10.3390/microorganisms8091301|10.3390/microorganisms8091301]]
Stöger A, Ruppitsch W (2004). A rapid and sensitive method for the detection of Xanthomonas fragariae, causal agent of angular leafspot disease in strawberry plants. J. Microbiol. Methods 58: 281-284. DOI: [[https://doi.org/10.1016/j.mimet.2004.04.002|10.1016/j.mimet.2004.04.002]]
Strayer AL, Jeyaprakash A, Minsavage GV, Timilsina S, Vallad GE, Jones JB, Paret ML (2016). A multiplex real-time PCR assay differentiates four //Xanthomonas// species associated with bacterial Spot of tomato. Plant Dis. 100: 1660-1668. DOI: [[https://doi.org/10.1094/PDIS-09-15-1085-RE|10.1094/PDIS-09-15-1085-RE]]
Strayer-Scherer A, Jones JB, Paret ML (2019). Recombinase polymerase amplification assay for field detection of tomato bacterial spot pathogens. Phytopathology 109: 690-700. DOI: [[https://doi.org/10.1094/PHYTO-03-18-0101-R|10.1094/PHYTO-03-18-0101-R]]
Suk Park D, Wook Hyun J, Jin Park Y, Sun Kim J, Wan Kang H, Ho Hahn J, Joo Go S (2006). Sensitive and specific detection of //Xanthomonas axonopodis// pv. //citri// by PCR using pathovar specific primers based on hrpW gene sequences. Microbiol. Res. 161: 145-149. DOI: [[https://doi.org/10.1016/j.micres.2005.07.005|10.1016/j.micres.2005.07.005]]
Tambong J, Xu R, Fleitas M, Wang L, Hubbard K, Kutcher HR (2023). Phylogenomic insights on the //Xanthomonas translucens// complex, and development of a TaqMan real-time assay for specific detection of pv. //translucens// on barley. Phytopathology 113: 2091-2102. DOI: [[https://doi.org/10.1094/PHYTO-01-23-0022-SA|10.1094/PHYTO-01-23-0022-SA]]
Tambong JT, Xu R, Fleitas MC, Wang L, Akuma M, Chi SI, Kutcher HR (2024). TaqMan real-time PCR assay for specific detection and differentiation of //Xanthomonas translucens// pv. //undulosa// from other pathovars targeting a recombination mediator gene, //recF//. Plant Dis. 108: 1869-1878. DOI: [[https://doi.org/10.1094/PDIS-09-23-1827-RE|10.1094/PDIS-09-23-1827-RE]]
Turechek WW, Hartung JS, McCallister J (2008). Development and optimization of a real-time detection assay for //Xanthomonas fragariae// in strawberry crown tissue with receiver operating characteristic curve analysis. Phytopathology 98: 359-368. DOI: [[https://doi.org/10.1094/PHYTO-98-3-0359|10.1094/PHYTO-98-3-0359]]
Utami D, Meale SJ, Young AJ (2024). Bacterial leaf spot susceptibility screening of chili pepper cultivars using qPCR determination of //Xanthomonas euvesicatoria// pv. //euvesicatoria// titers. Phytopathology 114: 681-689. DOI: [[https://doi.org/10.1094/PHYTO-12-22-0479-R|10.1094/PHYTO-12-22-0479-R]]
Vandroemme J, Baeyen S, Van Vaerenbergh J, De Vos, Maes M (2008). Sensitive real-time PCR detection of //Xanthomonas fragariae// in strawberry plants. Plant Pathol. 57: 438-444. DOI: [[https://doi.org/10.1111/j.1365-3059.2007.01813.x|10.1111/j.1365-3059.2007.01813.x]]
Wang H, Turechek WW (2016). A loop-mediated isothermal amplification assay and sample preparation procedure for sensitive detection of //Xanthomonas fragariae// in strawberry. PLoS ONE 11: e0147122. DOI: [[https://doi.org/10.1371/journal.pone.0147122|10.1371/journal.pone.0147122]]
Wang H, Turechek WW (2020). Detection of viable //Xanthomonas fragariae// cells in strawberry using propidium monoazide and long-amplicon quantitative PCR. Plant Dis. 104: 1105-1112. DOI: [[https://doi.org/10.1094/PDIS-10-19-2248-RE|10.1094/PDIS-10-19-2248-RE]]
Webber JB, Putnam M, Serdani M, Pscheidt JW, Wiman NG, Stockwell VO (2020). Characterization of isolates of //Xanthomonas arboricola// pv. //corylina//, the causal agent of bacterial blight, from Oregon hazelnut orchards. J. Plant Pathol. 102: 799-812. DOI: [[https://doi.org/10.1007/s42161-020-00505-6|10.1007/s42161-020-00505-6]]
Webster J, Kehoe MA, Nogarotto E, Falconer L, Donovan NJ, Chapman TA (2022). Using genomics to design a pathovar-specific loop-mediated isothermal amplification (LAMP) assay, for the improved detection of //Xanthomonas citri// pv. //citri//. Microorganisms 10: 1153. DOI: [[https://doi.org/10.3390/microorganisms10061153|10.3390/microorganisms10061153]]
Zhu Z, Li R, Zhang H, Wang J, Lu Y, Zhang D, Yang L (2022). PAM-free loop-mediated isothermal amplification coupled with CRISPR/Cas12a cleavage (Cas-PfLAMP) for rapid detection of rice pathogens. Biosens. Bioelectron. 204: 114076. DOI: [[https://doi.org/10.1016/j.bios.2022.114076|10.1016/j.bios.2022.114076]]