User Tools

Site Tools


bacteria:t3e:xopp

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopp [2025/02/13 12:43] jfpothierbacteria:t3e:xopp [2025/07/24 22:48] (current) jfpothier
Line 2: Line 2:
  
 Author: [[https://www.researchgate.net/profile/Claude_Bragard|Claude Bragard]]\\ Author: [[https://www.researchgate.net/profile/Claude_Bragard|Claude Bragard]]\\
-Internal reviewer: Harrold van den Burg+Internal reviewer: [[https://orcid.org/0000-0003-4142-374X|Harrold van den Burg]]\\
  
 Class: XopP\\ Class: XopP\\
Line 16: Line 16:
  
 XopP was identified in a genetic screen, using a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//) strain 85-10. The XopP::AvrBs2 fusion protein triggered a //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004). XopP was also identified in //X. campestris// pv. //campestris// (//Xcc//) strain 8004 as a candidate T3E due to the presence of a plant-inducible promoter (PIP) box in its gene, XC_2994 (Jiang //et al.//, 2009). XopP was identified in a genetic screen, using a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//) strain 85-10. The XopP::AvrBs2 fusion protein triggered a //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004). XopP was also identified in //X. campestris// pv. //campestris// (//Xcc//) strain 8004 as a candidate T3E due to the presence of a plant-inducible promoter (PIP) box in its gene, XC_2994 (Jiang //et al.//, 2009).
 +
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-Type III-dependent secretion was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004). Using an AvrBs1 reporter fusion, XopP<sub>Xcc8004</sub> was shown to be translated into plant cells in a //hrpF//- and //hpaB//-dependent manner (Jiang //et al.//, 2009).+Type III-dependent secretion was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004). Using an AvrBs1 reporter fusion, XopP<sub>Xcc8004</sub> was shown to be translated into plant cells in a //hrpF//- and //hpaB//-dependent manner (Jiang //et al.//, 2009). XopR<sub>//Xoo//</sub> was confirmed to have a functional type III secretion signal using a reporter fusion with AvrBs1 (Zhao //et al.//, 2013). 
 === Regulation === === Regulation ===
  
-The //xopP// <sub>Xcc8004</sub> gene contains a PIP box and was shown to be controlled by //hrpG// and //hrpX// (Jiang et al., 2009).+The //xopP//<sub>Xcc8004</sub> gene contains a PIP box and was shown to be controlled by //hrpG// and //hrpX// (Jiang et al., 2009).
  
 qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//), including //xopP//, were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup> (Liu //et al.//, 2016). qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//), including //xopP//, were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup> (Liu //et al.//, 2016).
 +
 === Phenotypes === === Phenotypes ===
  
Line 65: Line 68:
 Jiang W, Jiang B, Xu R, Huang J, Wei H, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris// pv. //campestris// and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]] Jiang W, Jiang B, Xu R, Huang J, Wei H, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris// pv. //campestris// and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]]
  
-Kotsaridis K, Michalopoulou VA, Tsakiri D, Kotsifaki D, Kefala A, Kountourakis N, Celie PHN, Kokkinidis M, Sarris PF (2023). The functional and structural characterization of //Xanthomonas campestris// pv. //campestris// core effector XopP revealed a new kinase activity. Plant J., in press. DOI: [[https://doi.org/10.1111/tpj.16362|10.1111/tpj.16362]]+Kotsaridis K, Michalopoulou VA, Tsakiri D, Kotsifaki D, Kefala A, Kountourakis N, Celie PHN, Kokkinidis M, Sarris PF (2023). The functional and structural characterization of //Xanthomonas campestris// pv. //campestris// core effector XopP revealed a new kinase activity. Plant J. 116: 100-111. DOI: [[https://doi.org/10.1111/tpj.16362|10.1111/tpj.16362]]
  
 Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]] Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]
Line 72: Line 75:
  
 Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]] Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]
 +
 +Zhao S, Mo WL, Wu F, Tang W, Tang JL, Szurek B, Verdier V, Koebnik R, Feng JX (2013). Identification of non-TAL effectors in //Xanthomonas oryzae// pv. //oryzae// Chinese strain 13751 and analysis of their role in the bacterial virulence. World J. Microbiol. Biotechnol. 29: 733-744. DOI: [[https://doi.org/10.1007/s11274-012-1229-5|10.1007/s11274-012-1229-5]]
  
 ===== Acknowledgements ===== ===== Acknowledgements =====
bacteria/t3e/xopp.1739450591.txt.gz · Last modified: 2025/02/13 12:43 by jfpothier