This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
bacteria:t3e:xopo [2020/11/26 15:16] – zdubrow | bacteria:t3e:xopo [2025/07/04 23:43] (current) – jfpothier | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== XopO ====== | + | ====== |
Author: Harrold van den Burg\\ | Author: Harrold van den Burg\\ | ||
Internal reviewer: [[https:// | Internal reviewer: [[https:// | ||
- | Expert reviewer: Zoe Dubrow | + | Expert reviewer: |
Class: XopO\\ | Class: XopO\\ | ||
Family: XopO\\ | Family: XopO\\ | ||
Prototype: XopO (// | Prototype: XopO (// | ||
- | RefSeq | + | GenBank |
+ | RefSeq ID: [[https:// | ||
3D structure: Unknown | 3D structure: Unknown | ||
Line 16: | Line 17: | ||
XopO was identified in a genetic screen, using a Tn// | XopO was identified in a genetic screen, using a Tn// | ||
+ | |||
=== (Experimental) evidence for being a T3E === | === (Experimental) evidence for being a T3E === | ||
Type III-dependent secretion was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004). | Type III-dependent secretion was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004). | ||
+ | |||
=== Regulation === | === Regulation === | ||
XopO was found to be regulated by HrpG using HrpG* (Roden //et al//., 2004). //XopO// contains a PIP box sequence 31bp upstream of the -10 promoter motif (Koebnik //et al//., 2006). | XopO was found to be regulated by HrpG using HrpG* (Roden //et al//., 2004). //XopO// contains a PIP box sequence 31bp upstream of the -10 promoter motif (Koebnik //et al//., 2006). | ||
+ | |||
=== Phenotypes === | === Phenotypes === | ||
- | * Roden et al. did not find significant growth defects of a // | + | * Roden et al. did not find significant growth defects of a //Xcv// Δ//xopO// mutant in susceptible pepper and tomato leaves (Roden et al., 2004). |
- | * XopO from // | + | * XopO from //Xcv// 85-10 inhibits cell death in //N. benthamiana// |
* XopO suppresses //X. euvesicatoria-// | * XopO suppresses //X. euvesicatoria-// | ||
- | * XopO failed to inhibit expression of the reporter gene // | + | * XopO failed to inhibit expression of the reporter gene //FRK1// in response to application of a PAMP, i.e. flg22 peptide (Popov //et al//., 2016). |
- | * Based on whole genome sequences of //X. euvesicatoria// | + | * Based on whole genome sequences of //X. euvesicatoria// |
=== Localization === | === Localization === | ||
Line 46: | Line 50: | ||
=== In xanthomonads === | === In xanthomonads === | ||
- | Yes, in some xanthomonads (//e.g.//, //X. euvesicatoria//, | + | Yes, in some xanthomonads (//e.g.//, //X. euvesicatoria//, |
=== In other plant pathogens/ | === In other plant pathogens/ | ||
- | Yes, //e.g.// homologs (AvrRps4 and HopK1) in // | + | Yes, //e.g.// homologs (AvrRps4 and HopK1) in // |
===== References ===== | ===== References ===== | ||
- | Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016) Whole-genome sequences of // | + | Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016) Whole-genome sequences of // |
- | Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for // | + | Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for //Xv3// disease resistance and interact with a subset of // |
Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of // | Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of // | ||
Line 62: | Line 66: | ||
Koebnik R, Krüger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: [[https:// | Koebnik R, Krüger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: [[https:// | ||
- | Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE (2019). A pathovar of // | + | Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE (2019). A pathovar of // |
+ | |||
+ | Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR, (2014). Distinct // | ||
+ | |||
+ | Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple // | ||
- | Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR, (2014). Distinct | + | Roden JA, Belt B, Ross JB, Tachibana |
- | Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple | + | Sohn KH, Zhang Y, Jones JD (2009). The //Pseudomonas syringae// effector protein, AvrRPS4, requires //in planta// processing and the KRVY domain to function. Plant J. 57: 1079-1091. DOI: [[https:// |
- | Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during | + | Teper D, Sunitha S, Martin GB, Sessa G (2015). Five // |
- | Sohn KH, Zhang Y, Jones JD (2009). The // | + | ===== Acknowledgements ===== |
- | Teper D, Sunitha S, Martin GB, Sessa G (2015). Five // | + | This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology). |