User Tools

Site Tools


bacteria:t3e:xopo

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopo [2020/11/26 15:16] zdubrowbacteria:t3e:xopo [2025/02/13 15:30] (current) – [The Type III Effector XopO from //Xanthomonas//] rkoebnik
Line 1: Line 1:
-====== XopO ======+====== The Type III Effector XopO from //Xanthomonas// ======
  
 Author: Harrold van den Burg\\ Author: Harrold van den Burg\\
 Internal reviewer: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\
-Expert reviewer: Zoe Dubrow+Expert reviewer: [[https://www.researchgate.net/profile/Zoe_Dubrow|Zoe Dubrow]]
  
 Class: XopO\\ Class: XopO\\
 Family: XopO\\ Family: XopO\\
 Prototype: XopO (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\ Prototype: XopO (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\
-RefSeq ID: [[https://www.ncbi.nlm.nih.gov/ipg/3884105|AAV74207.1]] (220 aa)\\+GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/AAV74207.1|AAV74207.1]] (220 aa)\\ 
 +RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011346566.1|WP_011346566.1]] (211 aa)\\
 3D structure: Unknown 3D structure: Unknown
  
Line 24: Line 25:
 === Phenotypes === === Phenotypes ===
  
-  * Roden et al. did not find significant growth defects of a //Xcv//  Δ//xopO//  mutant in susceptible pepper and tomato leaves (Roden et al., 2004). +  * Roden et al. did not find significant growth defects of a //Xcv// Δ//xopO// mutant in susceptible pepper and tomato leaves (Roden et al., 2004). 
-  * XopO from //Xcv//  85-10 inhibits cell death in //N. benthamiana//  (Teper //et al//., 2015).+  * XopO from //Xcv// 85-10 inhibits cell death in //N. benthamiana// (Teper //et al//., 2015).
   * XopO suppresses //X. euvesicatoria-//induced chlorosis in leaves of susceptible tomato (Teper //et al//., 2015).   * XopO suppresses //X. euvesicatoria-//induced chlorosis in leaves of susceptible tomato (Teper //et al//., 2015).
-  * XopO failed to inhibit expression of the reporter gene //FRK1//  in response to application of a PAMP, i.e. flg22 peptide (Popov //et al//., 2016). +  * XopO failed to inhibit expression of the reporter gene //FRK1// in response to application of a PAMP, i.e. flg22 peptide (Popov //et al//., 2016). 
-  * Based on whole genome sequences of //X. euvesicatoria//  strains, it was concluded that the //xopO//  gene has suffered from mutational inactivation by at least four different events, suggesting that selection pressure favors loss of //xopO//  function in this pathogen (Barak //et al//., 2016).+  * Based on whole genome sequences of //X. euvesicatoria// strains, it was concluded that the //xopO// gene has suffered from mutational inactivation by at least four different events, suggesting that selection pressure favors loss of //xopO// function in this pathogen (Barak //et al//., 2016).
  
 === Localization === === Localization ===
Line 46: Line 47:
 === In xanthomonads === === In xanthomonads ===
  
-Yes, in some xanthomonads (//e.g.//, //X. euvesicatoria//, //X. oryzae//) (Lang //et al//., 2019). X//opO// is a differential T3E gene between //Xoo//  and //Xoc//  (Hajri //et al//., 2012).+Yes, in some xanthomonads (//e.g.//, //X. euvesicatoria//, //X. oryzae//) (Lang //et al//., 2019). X//opO// is a differential T3E gene between //Xoo// and //Xoc// (Hajri //et al//., 2012).
  
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes, //e.g.// homologs (AvrRps4 and HopK1) in //Pseudomonas syringae//  (Li //et al//., 2014).+Yes, //e.g.// homologs (AvrRps4 and HopK1) in //Pseudomonas syringae// (Li //et al//., 2014).
  
 ===== References ===== ===== References =====
  
-Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016) Whole-genome sequences of //Xanthomonas euvesicatoria//  strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]]+Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016) Whole-genome sequences of //Xanthomonas euvesicatoria// strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]]
  
-Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for //Xv3//  disease resistance and interact with a subset of //Xanthomonas euvesicatoria//  effectors. Mol. Plant Microbe Interact. 31: 1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]]+Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for //Xv3// disease resistance and interact with a subset of //Xanthomonas euvesicatoria// effectors. Mol. Plant Microbe Interact. 31: 1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]]
  
 Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of //Xanthomonas oryzae//. Mol. Plant Pathol. 13: 288-302. DOI: [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|10.1111/j.1364-3703.2011.00745.x]] Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of //Xanthomonas oryzae//. Mol. Plant Pathol. 13: 288-302. DOI: [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|10.1111/j.1364-3703.2011.00745.x]]
Line 62: Line 63:
 Koebnik R, Krüger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: [[https://doi.org/10.1128/JB.00795-06|10.1128/JB.00795-06]] Koebnik R, Krüger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: [[https://doi.org/10.1128/JB.00795-06|10.1128/JB.00795-06]]
  
-Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE (2019). A pathovar of //Xanthomonas oryzae //infecting wild grasses provides insight into the evolution of pathogenicity in rice agroecosystems. Front. Plant Sci. 10: 1–15. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.3389/fpls.2019.00507]]+Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE (2019). A pathovar of //Xanthomonas oryzae// infecting wild grasses provides insight into the evolution of pathogenicity in rice agroecosystems. Front. Plant Sci. 10: 507. DOI: [[https://doi.org/10.3389/fpls.2019.00507|10.3389/fpls.2019.00507]]
  
-Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR, (2014). Distinct //Pseudomonas //type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J. 77: 310–321. DOI: [[https://doi.org/10.1111/tpj.12396|10.1111/tpj.12396]]+Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR, (2014). Distinct //Pseudomonas// type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J. 77: 310–321. DOI: [[https://doi.org/10.1111/tpj.12396|10.1111/tpj.12396]]
  
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria//  type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]+Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
-Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]+Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]
  
-Sohn KH, Zhang Y, Jones JD (2009). The //Pseudomonas syringae//  effector protein, AvrRPS4, requires in planta processing and the KRVY domain to function. Plant J. 57: 1079-1091. DOI: [[https://doi.org/10.1111/j.1365-313X.2008.03751.x|10.1111/j.1365-313X.2008.03751.x]] FIXME  Information needs to be added to the profile.+Sohn KH, Zhang Y, Jones JD (2009). The //Pseudomonas syringae// effector protein, AvrRPS4, requires //in planta// processing and the KRVY domain to function. Plant J. 57: 1079-1091. DOI: [[https://doi.org/10.1111/j.1365-313X.2008.03751.x|10.1111/j.1365-313X.2008.03751.x]] FIXME Information needs to be added to the profile.
  
-Teper D, Sunitha S, Martin GB, Sessa G (2015). Five //Xanthomonas//  type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10: e1064573. DOI: [[https://doi.org/10.1080/15592324.2015.1064573|10.1080/15592324.2015.1064573]]+Teper D, Sunitha S, Martin GB, Sessa G (2015). Five //Xanthomonas// type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10: e1064573. DOI: [[https://doi.org/10.1080/15592324.2015.1064573|10.1080/15592324.2015.1064573]] 
 + 
 +===== Acknowledgements ===== 
 + 
 +This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/xopo.1606403791.txt.gz · Last modified: 2023/01/09 10:20 (external edit)