User Tools

Site Tools


bacteria:t3e:xopo

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopo [2020/07/09 10:08] – [References] rkoebnikbacteria:t3e:xopo [2025/02/13 15:30] (current) – [The Type III Effector XopO from //Xanthomonas//] rkoebnik
Line 1: Line 1:
-====== XopO ======+====== The Type III Effector XopO from //Xanthomonas// ======
  
 Author: Harrold van den Burg\\ Author: Harrold van den Burg\\
 Internal reviewer: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\
-Expert reviewer: FIXME+Expert reviewer: [[https://www.researchgate.net/profile/Zoe_Dubrow|Zoe Dubrow]]
  
 Class: XopO\\ Class: XopO\\
 Family: XopO\\ Family: XopO\\
 Prototype: XopO (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\ Prototype: XopO (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\
-RefSeq ID: [[https://www.ncbi.nlm.nih.gov/ipg/3884105|AAV74207.1]] (220 aa)\\+GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/AAV74207.1|AAV74207.1]] (220 aa)\\ 
 +RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011346566.1|WP_011346566.1]] (211 aa)\\
 3D structure: Unknown 3D structure: Unknown
  
Line 15: Line 16:
 === How discovered? === === How discovered? ===
  
-XopO was identified in a genetic screen, using a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//)// //// //strain 85-10. The XopO::AvrBs2 fusion protein triggered a //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004).+XopO was identified in a genetic screen, using a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//)strain 85-10. The XopO::AvrBs2 fusion protein triggered a //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
Line 24: Line 25:
 === Phenotypes === === Phenotypes ===
  
-  * Roden et al. did not find significant growth defects of a //Xcv//  Δ//xopO//  mutant in susceptible pepper and tomato leaves (Roden et al., 2004). +  * Roden et al. did not find significant growth defects of a //Xcv// Δ//xopO// mutant in susceptible pepper and tomato leaves (Roden et al., 2004). 
-  * XopO from //Xcv//  85-10 inhibits cell death in //N. benthamiana//  (Teper //et al//., 2015).+  * XopO from //Xcv// 85-10 inhibits cell death in //N. benthamiana// (Teper //et al//., 2015).
   * XopO suppresses //X. euvesicatoria-//induced chlorosis in leaves of susceptible tomato (Teper //et al//., 2015).   * XopO suppresses //X. euvesicatoria-//induced chlorosis in leaves of susceptible tomato (Teper //et al//., 2015).
-  * XopO failed to inhibit expression of the reporter gene //FRK1//  in response to application of a PAMP, i.e. flg22 peptide (Popov //et al//., 2016). +  * XopO failed to inhibit expression of the reporter gene //FRK1// in response to application of a PAMP, i.e. flg22 peptide (Popov //et al//., 2016). 
-  * Based on whole genome sequences of //X. euvesicatoria//  strains, it was concluded that the //xopO//  gene has suffered from mutational inactivation by at least four different events, suggesting that selection pressure favors loss of //xopO//  function in this pathogen (Barak //et al//., 2016).+  * Based on whole genome sequences of //X. euvesicatoria// strains, it was concluded that the //xopO// gene has suffered from mutational inactivation by at least four different events, suggesting that selection pressure favors loss of //xopO// function in this pathogen (Barak //et al//., 2016).
  
 === Localization === === Localization ===
Line 40: Line 41:
 === Interaction partners === === Interaction partners ===
  
-XopO was shown to interact with tomato 14-3-3- proteins (TFT) (Dubrow //et al//., 2018).+XopO was shown to interact with tomato 14-3-3 (TFT) proteins (Dubrow //et al//., 2018).
  
 ===== Conservation ===== ===== Conservation =====
Line 46: Line 47:
 === In xanthomonads === === In xanthomonads ===
  
-Yes, in some xanthomonads (//e.g.//, //X. euvesicatoria//, //X. oryzae//) (Lang //et al//., 2019). The //xopO//  gene is a differential T3E gene between //Xoo//  and //Xoc//  (Hajri //et al//., 2012).+Yes, in some xanthomonads (//e.g.//, //X. euvesicatoria//, //X. oryzae//) (Lang //et al//., 2019). X//opO// is a differential T3E gene between //Xoo// and //Xoc// (Hajri //et al//., 2012).
  
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes, //e.g.//  //Pseudomonas syringae//  (Li //et al//., 2014).+Yes, //e.g.// homologs (AvrRps4 and HopK1) in //Pseudomonas syringae// (Li //et al//., 2014).
  
 ===== References ===== ===== References =====
Line 62: Line 63:
 Koebnik R, Krüger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: [[https://doi.org/10.1128/JB.00795-06|10.1128/JB.00795-06]] Koebnik R, Krüger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: [[https://doi.org/10.1128/JB.00795-06|10.1128/JB.00795-06]]
  
-Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE (2019). A pathovar of //Xanthomonas oryzae //infecting wild grasses provides insight into the evolution of pathogenicity in rice agroecosystems. Front. Plant Sci. 10: 1–15. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.3389/fpls.2019.00507]]+Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE (2019). A pathovar of //Xanthomonas oryzae// infecting wild grasses provides insight into the evolution of pathogenicity in rice agroecosystems. Front. Plant Sci. 10: 507. DOI: [[https://doi.org/10.3389/fpls.2019.00507|10.3389/fpls.2019.00507]]
  
-Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR, (2014). Distinct //Pseudomonas //type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J. 77: 310–321. DOI: [[https://doi.org/10.1111/tpj.12396|10.1111/tpj.12396]]+Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR, (2014). Distinct //Pseudomonas// type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J. 77: 310–321. DOI: [[https://doi.org/10.1111/tpj.12396|10.1111/tpj.12396]]
  
 Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]] Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
Line 70: Line 71:
 Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]] Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]
  
-Sohn KH, Zhang Y, Jones JD (2009). The //Pseudomonas syringae// effector protein, AvrRPS4, requires in planta processing and the KRVY domain to function. Plant J. 57: 1079-1091. DOI: [[https://doi.org/10.1111/j.1365-313X.2008.03751.x|10.1111/j.1365-313X.2008.03751.x]] FIXME Information needs to be added to the profile.+Sohn KH, Zhang Y, Jones JD (2009). The //Pseudomonas syringae// effector protein, AvrRPS4, requires //in planta// processing and the KRVY domain to function. Plant J. 57: 1079-1091. DOI: [[https://doi.org/10.1111/j.1365-313X.2008.03751.x|10.1111/j.1365-313X.2008.03751.x]] FIXME Information needs to be added to the profile.
  
 Teper D, Sunitha S, Martin GB, Sessa G (2015). Five //Xanthomonas// type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10: e1064573. DOI: [[https://doi.org/10.1080/15592324.2015.1064573|10.1080/15592324.2015.1064573]] Teper D, Sunitha S, Martin GB, Sessa G (2015). Five //Xanthomonas// type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10: e1064573. DOI: [[https://doi.org/10.1080/15592324.2015.1064573|10.1080/15592324.2015.1064573]]
 +
 +===== Acknowledgements =====
 +
 +This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/xopo.1594285725.txt.gz · Last modified: 2023/01/09 10:20 (external edit)