User Tools

Site Tools


bacteria:t3e:xopo

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopo [2020/06/30 17:55] – [References] rkoebnikbacteria:t3e:xopo [2025/02/13 15:30] (current) – [The Type III Effector XopO from //Xanthomonas//] rkoebnik
Line 1: Line 1:
-====== XopO ======+====== The Type III Effector XopO from //Xanthomonas// ======
  
 Author: Harrold van den Burg\\ Author: Harrold van den Burg\\
-Internal reviewer: FIXME\\ +Internal reviewer: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\ 
-Expert reviewer: FIXME+Expert reviewer: [[https://www.researchgate.net/profile/Zoe_Dubrow|Zoe Dubrow]]
  
 Class: XopO\\ Class: XopO\\
 Family: XopO\\ Family: XopO\\
-Prototype: XopO (//Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\ +Prototype: XopO (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\ 
-RefSeq ID: [[https://www.ncbi.nlm.nih.gov/ipg/3884105|AAV74207.1]] (220 aa)\\+GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/AAV74207.1|AAV74207.1]] (220 aa)\\ 
 +RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011346566.1|WP_011346566.1]] (211 aa)\\
 3D structure: Unknown 3D structure: Unknown
  
Line 14: Line 15:
  
 === How discovered? === === How discovered? ===
-XopO was discovered by a random transponson insertion (Tn5) screen using a AvrBs2<sub>62-547</sub> reporter (readout: hypersensitive response), a construct that lacks the endogenous type-III secretion and translocation signal (Roden //et al//., 2004). 
  
 +XopO was identified in a genetic screen, using a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//)strain 85-10. The XopO::AvrBs2 fusion protein triggered a //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
-XopO fused to the Cya reporter was used to show that it is translocated into plant cells in a //hrpF//-dependent manner (Roden //et al//., 2004). 
  
 +Type III-dependent secretion was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004).
 === Regulation === === Regulation ===
-XopO was found to be regulated by HrpG using HrpG* (Roden //et al//., 2004). //XopO// contains a PIP box sequence 31bp upstream of the -10 promoter motif (Koebnik //et al//., 2006). 
  
 +XopO was found to be regulated by HrpG using HrpG* (Roden //et al//., 2004). //XopO// contains a PIP box sequence 31bp upstream of the -10 promoter motif (Koebnik //et al//., 2006).
 === Phenotypes === === Phenotypes ===
-XopO from Xcv 85-10 inhibits cell death in //N. benthamiana// (Teper //et al//., 2015). XopO suppresses //X. euvesicatoria-//induced chlorosis in leaves of susceptible tomato (Teper //et al//., 2015). The //xopO// gene is a differential T3E gene between //Xoo// and //Xoc// (Hajri //et al//., 2012). XopO failed to inhibit expression of the reporter gene //FRK1// in response to application of a PAMP, i.e. flg22 peptide (Popov //et al//., 2016). Based on whole genome sequences of //X. euvesicatoria// strains, it was concluded that the //xopO// gene has suffered from mutational inactivation by at least four different events, suggesting that selection pressure favors loss of //xopO// function in this pathogen (Barak //et al//., 2016).+ 
 +  * Roden et al. did not find significant growth defects of a //Xcv// Δ//xopO// mutant in susceptible pepper and tomato leaves (Roden et al., 2004). 
 +  * XopO from //Xcv// 85-10 inhibits cell death in //N. benthamiana// (Teper //et al//., 2015). 
 +  * XopO suppresses //X. euvesicatoria-//induced chlorosis in leaves of susceptible tomato (Teper //et al//., 2015). 
 +  * XopO failed to inhibit expression of the reporter gene //FRK1// in response to application of a PAMP, i.e. flg22 peptide (Popov //et al//., 2016). 
 +  * Based on whole genome sequences of //X. euvesicatoria// strains, it was concluded that the //xopO// gene has suffered from mutational inactivation by at least four different events, suggesting that selection pressure favors loss of //xopO// function in this pathogen (Barak //et al//., 2016).
  
 === Localization === === Localization ===
 +
 Unknown. Unknown.
  
 === Enzymatic function === === Enzymatic function ===
 +
 Unknown. Unknown.
  
 === Interaction partners === === Interaction partners ===
-XopO was shown to interact with tomato 14-3-3- proteins (TFT) (Dubrow //et al//., 2018).+ 
 +XopO was shown to interact with tomato 14-3-3 (TFT) proteins (Dubrow //et al//., 2018).
  
 ===== Conservation ===== ===== Conservation =====
  
 === In xanthomonads === === In xanthomonads ===
-Yes, in some //Xanthomonads// (e.g. //X. oryzae// pv. //oryzicola//).+ 
 +Yes, in some xanthomonads (//e.g.//, //X. euvesicatoria//, //X. oryzae//) (Lang //et al//., 2019). X//opO// is a differential T3E gene between //Xoo// and //Xoc// (Hajri //et al//., 2012).
  
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
-Yes (HopK1 from //Pseudomonas syringae// pv. //tomato// HopPtoK, HolPtoAB); N-terminal domain of AvrRps4 from //Pseudomonas// species; //Acidovorax// spp.)+ 
 +Yes//e.g.// homologs (AvrRps4 and HopK1in //Pseudomonas syringae// (Li //et al//., 2014).
  
 ===== References ===== ===== References =====
Line 50: Line 61:
 Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of //Xanthomonas oryzae//. Mol. Plant Pathol. 13: 288-302. DOI: [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|10.1111/j.1364-3703.2011.00745.x]] Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of //Xanthomonas oryzae//. Mol. Plant Pathol. 13: 288-302. DOI: [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|10.1111/j.1364-3703.2011.00745.x]]
  
-Koebnik R, Kruger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: [[https://doi.org/10.1128/JB.00795-06|10.1128/JB.00795-06]]+Koebnik R, Krüger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: [[https://doi.org/10.1128/JB.00795-06|10.1128/JB.00795-06]] 
 + 
 +Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE (2019). A pathovar of //Xanthomonas oryzae// infecting wild grasses provides insight into the evolution of pathogenicity in rice agroecosystems. Front. Plant Sci. 10: 507. DOI: [[https://doi.org/10.3389/fpls.2019.00507|10.3389/fpls.2019.00507]] 
 + 
 +Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR, (2014). Distinct //Pseudomonas// type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J. 77: 310–321. DOI: [[https://doi.org/10.1111/tpj.12396|10.1111/tpj.12396]]
  
 Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]] Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
 Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]] Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]
 +
 +Sohn KH, Zhang Y, Jones JD (2009). The //Pseudomonas syringae// effector protein, AvrRPS4, requires //in planta// processing and the KRVY domain to function. Plant J. 57: 1079-1091. DOI: [[https://doi.org/10.1111/j.1365-313X.2008.03751.x|10.1111/j.1365-313X.2008.03751.x]] FIXME Information needs to be added to the profile.
  
 Teper D, Sunitha S, Martin GB, Sessa G (2015). Five //Xanthomonas// type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10: e1064573. DOI: [[https://doi.org/10.1080/15592324.2015.1064573|10.1080/15592324.2015.1064573]] Teper D, Sunitha S, Martin GB, Sessa G (2015). Five //Xanthomonas// type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signal. Behav. 10: e1064573. DOI: [[https://doi.org/10.1080/15592324.2015.1064573|10.1080/15592324.2015.1064573]]
 +
 +===== Acknowledgements =====
 +
 +This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/xopo.1593536148.txt.gz · Last modified: 2023/01/09 10:20 (external edit)