User Tools

Site Tools


bacteria:t3e:xopn

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopn [2025/07/04 23:42] jfpothierbacteria:t3e:xopn [2025/07/28 15:18] (current) – [Biological function] rkoebnik
Line 16: Line 16:
  
 XopN was identified in a genetic screen, using a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//) strain 85-10. The XopN::AvrBs2 fusion protein triggered a //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004). XopN was identified in a genetic screen, using a Tn//5//-based transposon construct harboring the coding sequence for the HR-inducing domain of AvrBs2, but devoid of the effectors' T3SS signal, that was randomly inserted into the genome of //X. campestris// pv. //vesicatoria// (//Xcv//) strain 85-10. The XopN::AvrBs2 fusion protein triggered a //Bs2//-dependent hypersensitive response (HR) in pepper leaves (Roden //et al//., 2004).
- 
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-Type III-dependent secretion was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004). XopR<sub>//Xoo// </sub> was confirmed to have a functional type III secretion signal using a reporter fusion with AvrBs1 (Zhao //et al.//, 2013). +Type III-dependent secretion was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004). XopN<sub>//Xoo//13751</sub> was confirmed to have a functional type III secretion signal using a reporter fusion with AvrBs1 (Zhao //et al.//, 2013).
 === Regulation === === Regulation ===
  
 Start codon of //xopN// was found downstream of a conserved cis-regulatory element, the plant-inducible promoter (PIP) box (TTCGG-N15-TTCTG). //xopN// is regulated by //hrpX// and //hrpG// genes (Jiang //et al//., 2008; Cheong //et al//., 2013). Start codon of //xopN// was found downstream of a conserved cis-regulatory element, the plant-inducible promoter (PIP) box (TTCGG-N15-TTCTG). //xopN// is regulated by //hrpX// and //hrpG// genes (Jiang //et al//., 2008; Cheong //et al//., 2013).
  
-qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//) were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup> , but this did not apply to //xopN// (Liu //et al.//, 2016). +qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//) were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup>  , but this did not apply to //xopN// (Liu //et al.//, 2016).
 === Phenotypes === === Phenotypes ===
  
bacteria/t3e/xopn.1751668979.txt.gz · Last modified: 2025/07/04 23:42 by jfpothier