User Tools

Site Tools


bacteria:t3e:xopn

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopn [2025/02/13 12:39] jfpothierbacteria:t3e:xopn [2025/12/11 12:25] (current) jfpothier
Line 2: Line 2:
  
 Author: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\ Author: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\
-Internal reviewer: [[https://www.researchgate.net/profile/Joana_Vicente2|Joana GVicente]]+Internal reviewer: [[https://www.researchgate.net/profile/Joana_Vicente2|Joana G Vicente]]\\
  
 Class: XopN\\ Class: XopN\\
Line 18: Line 18:
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-Type III-dependent secretion was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004).+Type III-dependent secretion was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004). XopN<sub>//Xoo//13751</sub> was confirmed to have a functional type III secretion signal using a reporter fusion with AvrBs1 (Zhao //et al.//, 2013).
 === Regulation === === Regulation ===
  
Line 32: Line 32:
   * XopN has been shown to be required for maximal pathogenicity of //X. axonopodis// pv. //punicae// (//Xap//) in pomegranate (Kumar and Mondal, 2013). The deletion of XopN from Xap caused higher accumulation of reactive oxygen species showing that XopN suppresses ROS-mediated defense responses during blight pathogenesis in pomegranate (Kumar //et al.//, 2016).   * XopN has been shown to be required for maximal pathogenicity of //X. axonopodis// pv. //punicae// (//Xap//) in pomegranate (Kumar and Mondal, 2013). The deletion of XopN from Xap caused higher accumulation of reactive oxygen species showing that XopN suppresses ROS-mediated defense responses during blight pathogenesis in pomegranate (Kumar //et al.//, 2016).
   * A Δ//xopN//–Δ//xopQ// double knock-out mutant in //X. phaseoli// pv. //manihotis// (//Xpm//) was less aggressive in the cassava host plant than its single mutation counterparts. In addition, //in planta// bacterial growth was reduced at 5 dpi in the double mutant with respect to the wild-type strain CIO151 and individual knock-out strains. The phenotype of the double mutant could be complemented when transforming a plasmid containing //xopQ//. These results confirmed that //xopN// and //xopQ //are functionally redundant in //Xpm// (Medina //et al.//, 2017).   * A Δ//xopN//–Δ//xopQ// double knock-out mutant in //X. phaseoli// pv. //manihotis// (//Xpm//) was less aggressive in the cassava host plant than its single mutation counterparts. In addition, //in planta// bacterial growth was reduced at 5 dpi in the double mutant with respect to the wild-type strain CIO151 and individual knock-out strains. The phenotype of the double mutant could be complemented when transforming a plasmid containing //xopQ//. These results confirmed that //xopN// and //xopQ //are functionally redundant in //Xpm// (Medina //et al.//, 2017).
-  * //Agrobacterium// mediated transient transfer of the gene for XopN resulted in suppression of rice innate immune responses induced by LipA, a hydrolitic enzyme secreted by //X. oryzae// pv. //oryzae// (Xoo), but a //xopN// <sup>//-// </sup> mutant of //Xoo//retains the ability to suppress these innate immune responses indicating other functionally redundant proteins; XopQ, XopX and XopZ were shown to be suppressors of LipA induced innate immune responses; mutation in any one of the //xopN, xopQ, xopX or xopZ// genes causes partial virulence deficiency (Sinha et al., 2013). XopN was shown to contribute significantly to //X. oryzae// pv. //oryzae// (Xoo) virulence on a susceptible rice variety Nipponbare. XopN was shown to be highly translocated to suppress rice defense responses (Mo //et al.//, 2020).+  * //Agrobacterium// mediated transient transfer of the gene for XopN resulted in suppression of rice innate immune responses induced by LipA, a hydrolitic enzyme secreted by //X. oryzae// pv. //oryzae// (Xoo), but a //xopN// <sup>//-//</sup> mutant of //Xoo//retains the ability to suppress these innate immune responses indicating other functionally redundant proteins; XopQ, XopX and XopZ were shown to be suppressors of LipA induced innate immune responses; mutation in any one of the //xopN, xopQ, xopX or xopZ//  genes causes partial virulence deficiency (Sinha et al., 2013). XopN was shown to contribute significantly to //X. oryzae// pv. //oryzae// (Xoo) virulence on a susceptible rice variety Nipponbare. XopN was shown to be highly translocated to suppress rice defense responses (Mo //et al.//, 2020).
   * XopN and AvrBS2 were shown to significantly contribute to virulence of //X. oryzae// pv. //oryzicola// (Xoc GX01) (Liao //et al.//, 2020).   * XopN and AvrBS2 were shown to significantly contribute to virulence of //X. oryzae// pv. //oryzicola// (Xoc GX01) (Liao //et al.//, 2020).
  
Line 89: Line 89:
 Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]] Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]
  
-Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV (2013). Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of //Xanthomonas oryzae// pv. //oryzae//. PLoS One 8: e75867. DOI: [[https://doi.org/10.1371/journal.pone.0075867|10.1371/journal.pone.007586]]7+Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV (2013). Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of //Xanthomonas oryzae// pv. //oryzae//. PLoS One 8: e75867. DOI: [[https://doi.org/10.1371/journal.pone.0075867|10.1371/journal.pone.0075867]]
  
 Taylor KW, Kim JG, Su XB, Aakre CD, Roden JA, Adams CM, Mudgett MB (2012). Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate //Xanthomonas// virulence. PLoS Pathog. 8: e1002768. DOI: [[https://doi.org/10.1371/journal.ppat.1002768|10.1371/journal.ppat.1002768]] Taylor KW, Kim JG, Su XB, Aakre CD, Roden JA, Adams CM, Mudgett MB (2012). Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate //Xanthomonas// virulence. PLoS Pathog. 8: e1002768. DOI: [[https://doi.org/10.1371/journal.ppat.1002768|10.1371/journal.ppat.1002768]]
 +
 +Zhao S, Mo WL, Wu F, Tang W, Tang JL, Szurek B, Verdier V, Koebnik R, Feng JX (2013). Identification of non-TAL effectors in //Xanthomonas oryzae// pv. //oryzae// Chinese strain 13751 and analysis of their role in the bacterial virulence. World J. Microbiol. Biotechnol. 29: 733-744. DOI: [[https://doi.org/10.1007/s11274-012-1229-5|10.1007/s11274-012-1229-5]]
  
 ===== Acknowledgements ===== ===== Acknowledgements =====
bacteria/t3e/xopn.1739450383.txt.gz · Last modified: 2025/02/13 12:39 by jfpothier