User Tools

Site Tools


bacteria:t3e:xopn

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopn [2023/05/22 12:23] – [XopN] rkoebnikbacteria:t3e:xopn [2025/02/24 11:51] (current) – [Biological function] rkoebnik
Line 1: Line 1:
-====== XopN ======+====== The Type III Effector XopN from //Xanthomonas// ======
  
 Author: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\ Author: [[https://www.researchgate.net/profile/Jakub_Pecenka|Jakub Pečenka]]\\
-Internal reviewer: [[https://www.researchgate.net/profile/Joana_Vicente2|Joana G. Vicente]]\\ +Internal reviewer: [[https://www.researchgate.net/profile/Joana_Vicente2|Joana G. Vicente]]
-Expert reviewer: FIXME+
  
 Class: XopN\\ Class: XopN\\
Line 19: Line 18:
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-Type III-dependent secretion was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004).+Type III-dependent secretion was confirmed using a calmodulin-dependent adenylate cyclase reporter assay, with a Δ//hrpF// mutant strain serving as negative control (Roden //et al.//, 2004). XopR<sub>//Xoo// </sub> was confirmed to have a functional type III secretion signal using a reporter fusion with AvrBs1 (Zhao //et al.//, 2013).
 === Regulation === === Regulation ===
  
 Start codon of //xopN// was found downstream of a conserved cis-regulatory element, the plant-inducible promoter (PIP) box (TTCGG-N15-TTCTG). //xopN// is regulated by //hrpX// and //hrpG// genes (Jiang //et al//., 2008; Cheong //et al//., 2013). Start codon of //xopN// was found downstream of a conserved cis-regulatory element, the plant-inducible promoter (PIP) box (TTCGG-N15-TTCTG). //xopN// is regulated by //hrpX// and //hrpG// genes (Jiang //et al//., 2008; Cheong //et al//., 2013).
  
-qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//) were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup>  , but this did not apply to //xopN// (Liu //et al.//, 2016).+qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//) were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup> , but this did not apply to //xopN// (Liu //et al.//, 2016).
 === Phenotypes === === Phenotypes ===
  
Line 32: Line 31:
   * The role of XopN in X. oryzae pv. oryzae is dependent on leaf stage (Cheong et al., 2013).   * The role of XopN in X. oryzae pv. oryzae is dependent on leaf stage (Cheong et al., 2013).
   * XopN has been shown to be required for maximal pathogenicity of //X. axonopodis//  pv. //punicae//  (//Xap//) in pomegranate (Kumar and Mondal, 2013). The deletion of XopN from Xap caused higher accumulation of reactive oxygen species showing that XopN suppresses ROS-mediated defense responses during blight pathogenesis in pomegranate (Kumar //et al.//, 2016).   * XopN has been shown to be required for maximal pathogenicity of //X. axonopodis//  pv. //punicae//  (//Xap//) in pomegranate (Kumar and Mondal, 2013). The deletion of XopN from Xap caused higher accumulation of reactive oxygen species showing that XopN suppresses ROS-mediated defense responses during blight pathogenesis in pomegranate (Kumar //et al.//, 2016).
-  * A Δ//xopN//–Δ//xopQ //double knock-out mutant in //X. phaseoli//  pv. //manihotis//  (//Xpm//) was less aggressive in the cassava host plant than its single mutation counterparts. In addition, //in planta //  bacterial growth was reduced at 5 dpi in the double mutant with respect to the wild-type strain CIO151 and individual knock-out strains. The phenotype of the double mutant could be complemented when transforming a plasmid containing //xopQ//. These results confirmed that //xopN //and// xopQ //are functionally redundant in //Xpm//  (Medina //et al.//, 2017). +  * A Δ//xopN//–Δ//xopQ//  double knock-out mutant in //X. phaseoli//  pv. //manihotis//  (//Xpm//) was less aggressive in the cassava host plant than its single mutation counterparts. In addition, //in planta//  bacterial growth was reduced at 5 dpi in the double mutant with respect to the wild-type strain CIO151 and individual knock-out strains. The phenotype of the double mutant could be complemented when transforming a plasmid containing //xopQ//. These results confirmed that //xopN//  and //xopQ //are functionally redundant in //Xpm//  (Medina //et al.//, 2017). 
-  * //Agrobacterium//  mediated transient transfer of the gene for XopN resulted in suppression of rice innate immune responses induced by LipA, a hydrolitic enzyme secreted by //X. oryzae//  pv. //oryzae//  (Xoo), but a //xopN// <sup>//-// </sup>   mutant of //Xoo//  retains the ability to suppress these innate immune responses indicating other functionally redundant proteins; XopQ, XopX and XopZ were shown to be suppressors of LipA induced innate immune responses; mutation in any one of the //xopN, xopQ, xopX or xopZ//  genes causes partial virulence deficiency (Sinha et al., 2013). XopN was shown to contribute significantly to //X. oryzae//  pv. //oryzae//  (Xoo) virulence on a susceptible rice variety Nipponbare. XopN was shown to be highly translocated to suppress rice defense responses (Mo //et al.//, 2020).+  * //Agrobacterium//  mediated transient transfer of the gene for XopN resulted in suppression of rice innate immune responses induced by LipA, a hydrolitic enzyme secreted by //X. oryzae//  pv. //oryzae//  (Xoo), but a //xopN// <sup>//-// </sup>   mutant of //Xoo//retains the ability to suppress these innate immune responses indicating other functionally redundant proteins; XopQ, XopX and XopZ were shown to be suppressors of LipA induced innate immune responses; mutation in any one of the //xopN, xopQ, xopX or xopZ//  genes causes partial virulence deficiency (Sinha et al., 2013). XopN was shown to contribute significantly to //X. oryzae//  pv. //oryzae//  (Xoo) virulence on a susceptible rice variety Nipponbare. XopN was shown to be highly translocated to suppress rice defense responses (Mo //et al.//, 2020).
   * XopN and AvrBS2 were shown to significantly contribute to virulence of //X. oryzae//  pv. //oryzicola//  (Xoc GX01) (Liao //et al.//, 2020).   * XopN and AvrBS2 were shown to significantly contribute to virulence of //X. oryzae//  pv. //oryzicola//  (Xoc GX01) (Liao //et al.//, 2020).
  
Line 56: Line 55:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.//, //X. axonopodis//, //X//. //campestris//, //X//. //citri//,// X//. //oryzae//). Since the G+C content of the //xopN//  gene is similar to that of the //Xcv////hrp gene//  cluster, it may be a member of a “core” group of //Xanthomonas//  spp. effectors (Roden et al., 2004).+Yes (//e.g.//, //X. axonopodis//, //X//. //campestris//, //X//. //citri//, //X//. //oryzae//). Since the G+C content of the //xopN// gene is similar to that of the //Xcv hrp// gene cluster, it may be a member of a “core” group of //Xanthomonas// spp. effectors (Roden et al., 2004).
  
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes (//e.g.//, //Pseudomonas//  spp.) (Kim //et al//., 2009).+Yes (//e.g.//, //Pseudomonas// spp.) (Kim //et al//., 2009).
  
 ===== References ===== ===== References =====
Line 90: Line 89:
 Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]] Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://doi.org/10.1073/pnas.0407383101|10.1073/pnas.0407383101]]
  
-Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV (2013). Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of //Xanthomonas oryzae// pv. //oryzae//. PLoS One 8: e75867. DOI: [[https://doi.org/10.1371/journal.pone.0075867|10.1371/journal.pone.007586]]7+Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV (2013). Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of //Xanthomonas oryzae// pv. //oryzae//. PLoS One 8: e75867. DOI: [[https://doi.org/10.1371/journal.pone.0075867|10.1371/journal.pone.0075867]]
  
 Taylor KW, Kim JG, Su XB, Aakre CD, Roden JA, Adams CM, Mudgett MB (2012). Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate //Xanthomonas// virulence. PLoS Pathog. 8: e1002768. DOI: [[https://doi.org/10.1371/journal.ppat.1002768|10.1371/journal.ppat.1002768]] Taylor KW, Kim JG, Su XB, Aakre CD, Roden JA, Adams CM, Mudgett MB (2012). Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate //Xanthomonas// virulence. PLoS Pathog. 8: e1002768. DOI: [[https://doi.org/10.1371/journal.ppat.1002768|10.1371/journal.ppat.1002768]]
 +
 +Zhao S, Mo WL, Wu F, Tang W, Tang JL, Szurek B, Verdier V, Koebnik R, Feng JX (2013). Identification of non-TAL effectors in //Xanthomonas oryzae// pv. //oryzae// Chinese strain 13751 and analysis of their role in the bacterial virulence. World J. Microbiol. Biotechnol. 29: 733-744. DOI: [[https://doi.org/10.1007/s11274-012-1229-5|10.1007/s11274-012-1229-5]]
 +
 +===== Acknowledgements =====
 +
 +This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/xopn.1684754591.txt.gz · Last modified: 2023/05/22 12:23 by rkoebnik