User Tools

Site Tools


bacteria:t3e:xopl

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopl [2025/02/13 12:36] jfpothierbacteria:t3e:xopl [2025/07/24 22:43] (current) jfpothier
Line 3: Line 3:
 Author: [[https://www.researchgate.net/profile/Joana_Vicente2|Joana G. Vicente]]\\ Author: [[https://www.researchgate.net/profile/Joana_Vicente2|Joana G. Vicente]]\\
 Internal reviewer: [[https://www.researchgate.net/profile/Joel_Pothier2|Joël F. Pothier]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Joel_Pothier2|Joël F. Pothier]]\\
-Expert reviewer: [[https://www.researchgate.net/profile/Jessica-Erickson-9|Jessica L. Erickson]]+Expert reviewer: [[https://www.researchgate.net/profile/Jessica-Erickson-9|Jessica L. Erickson]]\\
  
 Class: XopL\\ Class: XopL\\
Line 12: Line 12:
 Examples of other sequences: XopL<sub>Xcc306</sub> [[https://www.ncbi.nlm.nih.gov/protein/21109412|21109412]] (//X. citri// pv. //citri//); XopL<sub>Xcc8004</sub> [[https://www.ncbi.nlm.nih.gov/protein/66575899|66575899]] (//X. campestris// pv. //campestris//)\\ Examples of other sequences: XopL<sub>Xcc306</sub> [[https://www.ncbi.nlm.nih.gov/protein/21109412|21109412]] (//X. citri// pv. //citri//); XopL<sub>Xcc8004</sub> [[https://www.ncbi.nlm.nih.gov/protein/66575899|66575899]] (//X. campestris// pv. //campestris//)\\
 3D structure: [[https://www.rcsb.org/structure/4FC9|4FC9]], [[https://www.rcsb.org/structure/4FCG|4FCG]] (Singer //et al//., 2013). Full-length XopL<sub>Xcv85-10</sub> did not crystallize but fragments XopL[aa 144–450] and XopL[aa 474–660] yielded crystals (Singer //et al//., 2013). The crystal structure of the N-terminal region of XopL showed the presence of a leucine-rich repeat (LRR) domain, that might serve as a protein-protein interaction module for ubiquitination target recognition (Singer //et al//., 2013). The protein represents a new class of E3 ubiquitin ligases. 3D structure: [[https://www.rcsb.org/structure/4FC9|4FC9]], [[https://www.rcsb.org/structure/4FCG|4FCG]] (Singer //et al//., 2013). Full-length XopL<sub>Xcv85-10</sub> did not crystallize but fragments XopL[aa 144–450] and XopL[aa 474–660] yielded crystals (Singer //et al//., 2013). The crystal structure of the N-terminal region of XopL showed the presence of a leucine-rich repeat (LRR) domain, that might serve as a protein-protein interaction module for ubiquitination target recognition (Singer //et al//., 2013). The protein represents a new class of E3 ubiquitin ligases.
 +
 ===== Biological function ===== ===== Biological function =====
  
 === How discovered? === === How discovered? ===
  
-XopL was first identified in //X. campestris// pv. //campestris// (//Xcc//) strain 8004 as a candidate T3E due to the presence of a plant-inducible promoter (PIP) box upstream of the CDS, //XC_4273// (Jiang //et al.//, 2009). The CDS //XC_4273//, re-called XopXccLR (LR = leucine-rich repeat) or XopL<sub>Xcc</sub> for the purposes of this article, in //Xcc// 8004 was suggested to be a T3E as it harboured a N-terminal region possessing a translocation signal that was able to target proteins into plant cells (Jiang //et al.//, 2009). It was also shown to be required for //Xcc// proliferation in hosts plant (Jiang //et al.//, 2009). It was only a few years later that the analysis of the genome sequence of //X.// //campestris// pv. //vesicatoria// (//Xcv//) strain 85-10 (synonymous with //X. euvesicatoria// 85-10; //Xe// 85-10) led to the identification of XCV3220 (//xopL<sub>Xe</sub> //) as a new T3E candidate gene and to its more complete characterization (Singer //et al//., 2013). XopL<sub>Xe</sub> was shown to have E3 ubiquitin ligase activity, conferred by a ligase domain with a novel fold (XL-box), capable of interacting with the plant host ubiquitination cascade (Singer //et al.//, 2023).+XopL was first identified in //X. campestris// pv. //campestris// (//Xcc//) strain 8004 as a candidate T3E due to the presence of a plant-inducible promoter (PIP) box upstream of the CDS, //XC_4273// (Jiang //et al.//, 2009). The CDS //XC_4273//, re-called XopXccLR (LR = leucine-rich repeat) or XopL<sub>Xcc</sub> for the purposes of this article, in //Xcc// 8004 was suggested to be a T3E as it harboured a N-terminal region possessing a translocation signal that was able to target proteins into plant cells (Jiang //et al.//, 2009). It was also shown to be required for //Xcc// proliferation in hosts plant (Jiang //et al.//, 2009). It was only a few years later that the analysis of the genome sequence of //X.// //campestris// pv. //vesicatoria// (//Xcv//) strain 85-10 (synonymous with //X. euvesicatoria// 85-10; //Xe// 85-10) led to the identification of XCV3220 (//xopL<sub>Xe</sub>//) as a new T3E candidate gene and to its more complete characterization (Singer //et al//., 2013). XopL<sub>Xe</sub> was shown to have E3 ubiquitin ligase activity, conferred by a ligase domain with a novel fold (XL-box), capable of interacting with the plant host ubiquitination cascade (Singer //et al.//, 2023).
  
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-XopL<sub>Xcc</sub> possesses features that are typical of T3Es: the promoter region of the //xopL<sub>Xcc</sub>// gene contains a perfect plant inducible promoter (PIP) box followed by a 10 box similar sequence (TTCGC-N<sub>15</sub>-TTCGC-N<sub>31</sub>-ACGACA) and an LRR motif characteristic of T3Es in pathogenic bacteria (Yan //et al//., 2019). Using an AvrBs1 reporter fusion, XopL<sub>Xcc</sub> was shown to be translocated into plant cells in a //hrpF-// and //hpaB//-dependent manner (Jiang //et al//., 2009). XopL<sub>Xe</sub> also contains a PIP box (plant inducible promoter) in its promoter (TTCG-N<sub>16</sub>-TTCG; genome position 3669238-261) and co-regulation with the T3S system was confirmed by RT-PCR (Singer //et al.//, 2013). Type III-dependent secretion and translocation was confirmed by //in vitro//secretion and //in vivo//translocation assays (Singer //et al.//, 2013).+XopL<sub>Xcc</sub> possesses features that are typical of T3Es: the promoter region of the //xopL<sub>Xcc</sub>// gene contains a perfect plant inducible promoter (PIP) box followed by a 10 box similar sequence (TTCGC-N<sub>15</sub>-TTCGC-N<sub>31</sub>-ACGACA) and an LRR motif characteristic of T3Es in pathogenic bacteria (Yan //et al//., 2019). Using an AvrBs1 reporter fusion, XopL<sub>Xcc</sub> was shown to be translocated into plant cells in a //hrpF-// and //hpaB//-dependent manner (Jiang //et al//., 2009). XopL<sub>Xe</sub> also contains a PIP box (plant inducible promoter) in its promoter (TTCG-N<sub>16</sub>-TTCG; genome position 3669238-261) and co-regulation with the T3S system was confirmed by RT-PCR (Singer //et al.//, 2013). Type III-dependent secretion and translocation was confirmed by //in vitro// secretion and //in vivo// translocation assays (Singer //et al.//, 2013). 
 === Regulation === === Regulation ===
  
Line 28: Line 30:
  
 The expression of //xopL<sub>Xcc</sub>// gene is positively regulated by HrpG/HrpX (Yan //et al//., 2019). The expression of //xopL<sub>Xcc</sub>// gene is positively regulated by HrpG/HrpX (Yan //et al//., 2019).
 +
 === Phenotypes === === Phenotypes ===
  
-  * XopL<sub>//Xe//</sub>  from //X. euvesicatoria//  85-10 (previously referred to as //X. campestris// pv. //euvesicatoria//; //Xcv//) displays E3 ubiquitin ligase activity (Singer //et al.//, 2013).+  * XopL<sub>//Xe//</sub> from //X. euvesicatoria// 85-10 (previously referred to as //X. campestris// pv. //euvesicatoria//; //Xcv//) displays E3 ubiquitin ligase activity (Singer //et al.//, 2013).
   * XopL//<sub>Xe</sub>// inhibits expression of the elf18- and flg22-induced defense gene pNHL10 in //Arabidopsis// mesophyll protoplasts independent of E3 ligase function (Singer //et al.//, 2013).   * XopL//<sub>Xe</sub>// inhibits expression of the elf18- and flg22-induced defense gene pNHL10 in //Arabidopsis// mesophyll protoplasts independent of E3 ligase function (Singer //et al.//, 2013).
   * XopL//<sub>Xe</sub>// suppresses ABA responsive reporter //pRD29b:GUS// and PTI reporter //pFRK1:LUC// in //Arabidopsis// protoplasts (Popov //et al//., 2016).   * XopL//<sub>Xe</sub>// suppresses ABA responsive reporter //pRD29b:GUS// and PTI reporter //pFRK1:LUC// in //Arabidopsis// protoplasts (Popov //et al//., 2016).
Line 39: Line 42:
   * XopL//<sub>Xcc</sub>// constitutive overexpression in //Arabidopsis// led to enhanced //Xcc// 8004 virulence and suppressed callose deposition and oxidative burst (Huang //et al.//, 2024).   * XopL//<sub>Xcc</sub>// constitutive overexpression in //Arabidopsis// led to enhanced //Xcc// 8004 virulence and suppressed callose deposition and oxidative burst (Huang //et al.//, 2024).
   * XopL//<sub>Xe</sub>// is required for full virulence of //Xe// 85-10 on tomato (Leong et al., 2022).   * XopL//<sub>Xe</sub>// is required for full virulence of //Xe// 85-10 on tomato (Leong et al., 2022).
-  * XopL//<sub>Xap</sub>// supports //X. axonopodis //pv.// punicae //multiplication in pomegranate by suppressing plant immune responses including plant cell death (Soni //et al//., 2017). +  * XopL//<sub>Xap</sub>// supports //X. axonopodis// pv.// punicae //multiplication in pomegranate by suppressing plant immune responses including plant cell death (Soni //et al//., 2017). 
-  * Transient expression of XopL//<sub>Xe</sub> //, led to a nearly complete elimination of stromules and the relocation of plastids to the nucleus and further characterization revealed that the E3 ligase activity is essential for the two plastid phenotypes (//Erickson et al//., 2018). +  * Transient expression of XopL//<sub>Xe</sub>//, led to a nearly complete elimination of stromules and the relocation of plastids to the nucleus and further characterization revealed that the E3 ligase activity is essential for the two plastid phenotypes (//Erickson et al//., 2018). 
-  * //Xe //85-10 suppresses host autophagy by utilizing type-III effector XopL//<sub>Xe</sub> //. Intriguingly, XopL//<sub>Xe</sub>// is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery (Leong// et al.//, 2022).+  * //Xe//85-10 suppresses host autophagy by utilizing type-III effector XopL//<sub>Xe</sub>//. Intriguingly, XopL//<sub>Xe</sub>// is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery (Leong// et al.//, 2022). 
 === Localization === === Localization ===
  
 Several localization patterns have been reported for XopL proteins in epidermal cells with some strain dependent differences. XopLs are most often tagged at the C-terminus, with the exception of the studies by Leong //et al//., 2022 and Yan //et al.//, 2019. Several localization patterns have been reported for XopL proteins in epidermal cells with some strain dependent differences. XopLs are most often tagged at the C-terminus, with the exception of the studies by Leong //et al//., 2022 and Yan //et al.//, 2019.
  
-  * __Cytosolic localization__ has been reported for XopL//<sub>Xe</sub>// (Erickson //et al.//, 2018), XopL//<sub>Xcc</sub>// (Yan //et al//., 2019; Ortmann //et al//. 2023), XopL<sub>//Xoo//</sub> (Ma //et al//., 2020; Ortmann //et al//., 2023), and XopL//<sub>Xac</sub> //  from //X. citri// pv. //citri// (Ortmann et al. 2023) in //N. benthamiana//+  * __Cytosolic localization__ has been reported for XopL//<sub>Xe</sub>// (Erickson //et al.//, 2018), XopL//<sub>Xcc</sub>// (Yan //et al//., 2019; Ortmann //et al//. 2023), XopL<sub>//Xoo//</sub> (Ma //et al//., 2020; Ortmann //et al//., 2023), and XopL//<sub>Xac</sub>// from //X. citri// pv. //citri// (Ortmann et al. 2023) in //N. benthamiana//
-  * __Nuclear localization__ was reported for XopL//<sub>Xe</sub>//, XopL<sub>//Xcc//</sub> (Yan //et al.//, 2019; Ortmann //et al//., 2023) and XopL//<sub>Xac</sub>// in //N. benthamiana// (Ortmann et al. 2023), but not for XopL//<sub>Xoo</sub>// in //N. benthamiana// or XopL//<sub>Xap</sub>// from //X. axonopodis// pv. //punicae// in //Arabidopsis// protoplasts (Soni //et al.//, 2017; Ortmann //et al.,// 2023).+  * __Nuclear localization__ was reported for XopL//<sub>Xe</sub>//, XopL<sub>//Xcc//</sub> (Yan //et al.//, 2019; Ortmann //et al//., 2023) and XopL//<sub>Xac</sub>// in //N. benthamiana// (Ortmann et al. 2023), but not for XopL//<sub>Xoo</sub>// in //N. benthamiana// or XopL//<sub>Xap</sub>// from //X. axonopodis// pv. //punicae// in //Arabidopsis// protoplasts (Soni //et al.//, 2017; Ortmann //et al//., 2023).
   * __Plasma membrane localization__ has been reported for XopL<sub>//Xap//</sub> transiently expressed in //N. benthmiana// (Soni //et al//., 2017) and XopL//<sub>Xcc</sub>// expressed in //Arabidopsis// protoplasts (Huang //et al//. 2024b; Yan //et al.// , 2019) and //N. benthamiana// leaves (Yan //et al//., 2019).   * __Plasma membrane localization__ has been reported for XopL<sub>//Xap//</sub> transiently expressed in //N. benthmiana// (Soni //et al//., 2017) and XopL//<sub>Xcc</sub>// expressed in //Arabidopsis// protoplasts (Huang //et al//. 2024b; Yan //et al.// , 2019) and //N. benthamiana// leaves (Yan //et al//., 2019).
   * __Microtubule localization__ has been reported for XopL//<sub>Xe</sub>//, XopL<sub>//Xoo//</sub> and XopL//<sub>Xac</sub>//, whereas the distantly related XopL//<sub>Xcc</sub>// failed to localize to microtubules in //N. benthamiana// (Ortmann //et al.//, 2023).   * __Microtubule localization__ has been reported for XopL//<sub>Xe</sub>//, XopL<sub>//Xoo//</sub> and XopL//<sub>Xac</sub>//, whereas the distantly related XopL//<sub>Xcc</sub>// failed to localize to microtubules in //N. benthamiana// (Ortmann //et al.//, 2023).
   * __Autophagosome localization__ has been reported for XopL//<sub>Xe</sub>// (co-localizes with autophagy markers RFP-ATG8e and SH3P2-RFP; Leong //et al//., 2022).   * __Autophagosome localization__ has been reported for XopL//<sub>Xe</sub>// (co-localizes with autophagy markers RFP-ATG8e and SH3P2-RFP; Leong //et al//., 2022).
 +
 === Enzymatic function === === Enzymatic function ===
  
bacteria/t3e/xopl.1739450160.txt.gz · Last modified: 2025/02/13 12:36 by jfpothier