User Tools

Site Tools


bacteria:t3e:xopl

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
bacteria:t3e:xopl [2025/01/27 23:23] – [Biological function] jfpothierbacteria:t3e:xopl [2025/02/13 12:36] (current) jfpothier
Line 20: Line 20:
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-XopL<sub>Xcc</sub> possesses features that are typical of T3Es: the promoter region of the //xopL<sub>Xcc</sub>// gene contains a perfect plant inducible promoter (PIP) box followed by a 10 box similar sequence (TTCGC-N<sub>15</sub>-TTCGC-N<sub>31</sub>-ACGACA) and an LRR motif characteristic of T3Es in pathogenic bacteria (Yan //et al//., 2019). Using an AvrBs1 reporter fusion, XopL<sub>Xcc</sub> was shown to be translocated into plant cells in a //hrpF-// and //hpaB//-dependent manner (Jiang //et al//., 2009). XopL<sub>Xe</sub> also contains a PIP box (plant inducible promoter) in its promoter (TTCG-N<sub>16</sub>-TTCG; genome position 3669238-261) and co-regulation with the T3S system was confirmed by RT-PCR (Singer //et al.//, 2013). Type III-dependent secretion and translocation was confirmed by //in vitro //secretion and //in vivo //translocation assays (Singer// et al.//, 2013).+XopL<sub>Xcc</sub> possesses features that are typical of T3Es: the promoter region of the //xopL<sub>Xcc</sub>// gene contains a perfect plant inducible promoter (PIP) box followed by a 10 box similar sequence (TTCGC-N<sub>15</sub>-TTCGC-N<sub>31</sub>-ACGACA) and an LRR motif characteristic of T3Es in pathogenic bacteria (Yan //et al//., 2019). Using an AvrBs1 reporter fusion, XopL<sub>Xcc</sub> was shown to be translocated into plant cells in a //hrpF-// and //hpaB//-dependent manner (Jiang //et al//., 2009). XopL<sub>Xe</sub> also contains a PIP box (plant inducible promoter) in its promoter (TTCG-N<sub>16</sub>-TTCG; genome position 3669238-261) and co-regulation with the T3S system was confirmed by RT-PCR (Singer //et al.//, 2013). Type III-dependent secretion and translocation was confirmed by //in vitro//secretion and //in vivo//translocation assays (Singer //et al.//, 2013).
 === Regulation === === Regulation ===
  
Line 34: Line 34:
   * XopL//<sub>Xe</sub>// suppresses ABA responsive reporter //pRD29b:GUS// and PTI reporter //pFRK1:LUC// in //Arabidopsis// protoplasts (Popov //et al//., 2016).   * XopL//<sub>Xe</sub>// suppresses ABA responsive reporter //pRD29b:GUS// and PTI reporter //pFRK1:LUC// in //Arabidopsis// protoplasts (Popov //et al//., 2016).
   * XopL//<sub>Xcc</sub>// interferes with innate immunity (Yan //et al.//, 2019; Huang //et al.//, 2024a) and SA signaling in //Arabidopsis// (Huang //et al.//, 2024).   * XopL//<sub>Xcc</sub>// interferes with innate immunity (Yan //et al.//, 2019; Huang //et al.//, 2024a) and SA signaling in //Arabidopsis// (Huang //et al.//, 2024).
-  * XopL//<sub>Xe</sub>// triggers cell death in //Nicotiana benthamiana//  in an E3 ligase dependant manner (Singer //et al.//, 2013). XopL<sub>Xoc</sub>  from //X. oryzae//  pv. //oryzicola// and XopL<sub>Xoo</sub> from //X. oryzae// pv. //oryzae// PX099A also cause cell death in this model (Ma //et al.//, 2020).+  * XopL//<sub>Xe</sub>// triggers cell death in //Nicotiana benthamiana// in an E3 ligase dependant manner (Singer //et al.//, 2013). XopL<sub>Xoc</sub> from //X. oryzae// pv. //oryzicola// and XopL<sub>Xoo</sub> from //X. oryzae// pv. //oryzae// PX099A also cause cell death in this model (Ma //et al.//, 2020).
   * Distantly related XopL homolog XopL//<sub>Xcc</sub>// from //Xcc// 8004 failed to cause plant cell death. (Ortmann //et al.//, 2023).   * Distantly related XopL homolog XopL//<sub>Xcc</sub>// from //Xcc// 8004 failed to cause plant cell death. (Ortmann //et al.//, 2023).
-  * XopL//<sub>Xcc</sub>//  is required for full virulence and growth of //Xcc// 8004 in the host plant Chinese radish (Jiang //et al.//, 2009) but not in //Arabidopsis// (Huang et al, 2024). However a mutant for 17 effectors (Δ//17E//) supplemented with //xopL<sub>Xcc</sub> //  did grow better than Δ//17E//+  * XopL//<sub>Xcc</sub>// is required for full virulence and growth of //Xcc// 8004 in the host plant Chinese radish (Jiang //et al.//, 2009) but not in //Arabidopsis// (Huang et al, 2024). However a mutant for 17 effectors (Δ//17E//) supplemented with //xopL<sub>Xcc</sub> // did grow better than Δ//17E//
-  * XopL//<sub>Xcc</sub>//  constitutive overexpression in //Arabidopsis//  led to enhanced //Xcc// 8004 virulence and suppressed callose deposition and oxidative burst (Huang //et al.//, 2024). +  * XopL//<sub>Xcc</sub>// constitutive overexpression in //Arabidopsis// led to enhanced //Xcc// 8004 virulence and suppressed callose deposition and oxidative burst (Huang //et al.//, 2024). 
-  * XopL//<sub>Xe</sub>//  is required for full virulence of //Xe//  85-10 on tomato (Leong et al., 2022). +  * XopL//<sub>Xe</sub>// is required for full virulence of //Xe// 85-10 on tomato (Leong et al., 2022). 
-  * XopL//<sub>Xap</sub>//  supports //X. axonopodis //pv.// punicae //multiplication in pomegranate by suppressing plant immune responses including plant cell death (Soni //et al//., 2017).+  * XopL//<sub>Xap</sub>// supports //X. axonopodis //pv.// punicae //multiplication in pomegranate by suppressing plant immune responses including plant cell death (Soni //et al//., 2017).
   * Transient expression of XopL//<sub>Xe</sub> //, led to a nearly complete elimination of stromules and the relocation of plastids to the nucleus and further characterization revealed that the E3 ligase activity is essential for the two plastid phenotypes (//Erickson et al//., 2018).   * Transient expression of XopL//<sub>Xe</sub> //, led to a nearly complete elimination of stromules and the relocation of plastids to the nucleus and further characterization revealed that the E3 ligase activity is essential for the two plastid phenotypes (//Erickson et al//., 2018).
   * //Xe //85-10 suppresses host autophagy by utilizing type-III effector XopL//<sub>Xe</sub> //. Intriguingly, XopL//<sub>Xe</sub>// is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery (Leong// et al.//, 2022).   * //Xe //85-10 suppresses host autophagy by utilizing type-III effector XopL//<sub>Xe</sub> //. Intriguingly, XopL//<sub>Xe</sub>// is targeted for degradation by defense-related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery (Leong// et al.//, 2022).
Line 46: Line 46:
 Several localization patterns have been reported for XopL proteins in epidermal cells with some strain dependent differences. XopLs are most often tagged at the C-terminus, with the exception of the studies by Leong //et al//., 2022 and Yan //et al.//, 2019. Several localization patterns have been reported for XopL proteins in epidermal cells with some strain dependent differences. XopLs are most often tagged at the C-terminus, with the exception of the studies by Leong //et al//., 2022 and Yan //et al.//, 2019.
  
-  * __Cytosolic localization__  has been reported for XopL//<sub>Xe</sub>//  (Erickson //et al.//, 2018), XopL//<sub>Xcc</sub>//  (Yan //et al//., 2019; Ortmann //et al//. 2023), XopL<sub>//Xoo//</sub>  (Ma //et al//., 2020; Ortmann //et al//., 2023), and XopL//<sub>Xac</sub> //  from //X. citri// pv. //citri//  (Ortmann et al. 2023) in //N. benthamiana//+  * __Cytosolic localization__ has been reported for XopL//<sub>Xe</sub>// (Erickson //et al.//, 2018), XopL//<sub>Xcc</sub>// (Yan //et al//., 2019; Ortmann //et al//. 2023), XopL<sub>//Xoo//</sub> (Ma //et al//., 2020; Ortmann //et al//., 2023), and XopL//<sub>Xac</sub> //  from //X. citri// pv. //citri// (Ortmann et al. 2023) in //N. benthamiana//
-  * __Nuclear localization__  was reported for XopL//<sub>Xe</sub>//, XopL<sub>//Xcc//</sub>  (Yan //et al.//, 2019; Ortmann //et al//., 2023) and XopL//<sub>Xac</sub>//  in //N. benthamiana//  (Ortmann et al. 2023), but not for XopL//<sub>Xoo</sub>//  in //N. benthamiana// or XopL//<sub>Xap</sub>//  from //X. axonopodis//  pv. //punicae//  in //Arabidopsis// protoplasts (Soni //et al.//, 2017; Ortmann //et al.,// 2023). +  * __Nuclear localization__ was reported for XopL//<sub>Xe</sub>//, XopL<sub>//Xcc//</sub> (Yan //et al.//, 2019; Ortmann //et al//., 2023) and XopL//<sub>Xac</sub>// in //N. benthamiana// (Ortmann et al. 2023), but not for XopL//<sub>Xoo</sub>// in //N. benthamiana// or XopL//<sub>Xap</sub>// from //X. axonopodis// pv. //punicae// in //Arabidopsis// protoplasts (Soni //et al.//, 2017; Ortmann //et al.,// 2023). 
-  * __Plasma membrane localization__  has been reported for XopL<sub>//Xap//</sub>  transiently expressed in //N. benthmiana//  (Soni //et al//., 2017) and XopL//<sub>Xcc</sub>// expressed in //Arabidopsis// protoplasts (Huang //et al//. 2024b; Yan //et al.//  , 2019) and //N. benthamiana//  leaves (Yan //et al//., 2019). +  * __Plasma membrane localization__ has been reported for XopL<sub>//Xap//</sub> transiently expressed in //N. benthmiana// (Soni //et al//., 2017) and XopL//<sub>Xcc</sub>// expressed in //Arabidopsis// protoplasts (Huang //et al//. 2024b; Yan //et al.// , 2019) and //N. benthamiana// leaves (Yan //et al//., 2019). 
-  * __Microtubule localization__  has been reported for XopL//<sub>Xe</sub>//, XopL<sub>//Xoo//</sub>  and XopL//<sub>Xac</sub>//, whereas the distantly related XopL//<sub>Xcc</sub>// failed to localize to microtubules in //N. benthamiana// (Ortmann //et al.//, 2023). +  * __Microtubule localization__ has been reported for XopL//<sub>Xe</sub>//, XopL<sub>//Xoo//</sub> and XopL//<sub>Xac</sub>//, whereas the distantly related XopL//<sub>Xcc</sub>// failed to localize to microtubules in //N. benthamiana// (Ortmann //et al.//, 2023). 
-  * __Autophagosome localization__  has been reported for XopL//<sub>Xe</sub>//  (co-localizes with autophagy markers RFP-ATG8e and SH3P2-RFP; Leong //et al//., 2022).+  * __Autophagosome localization__ has been reported for XopL//<sub>Xe</sub>// (co-localizes with autophagy markers RFP-ATG8e and SH3P2-RFP; Leong //et al//., 2022).
 === Enzymatic function === === Enzymatic function ===
  
Line 63: Line 63:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.//, //X. euvesicatoria//, //X. citri//, //X. axonopodis//, //X. oryzae//, //X. oryzicola//, //X//. //fragariae//, //X//. //perforans, X. gardneri//, //X. campestris//  pv. //campestris//, but not //X. campestris//  pv. //raphani//, in some //X. arboricola//  pathovars). See for example [[https://doi.org/10.1094/MPMI-22-11-1401|Table 2]] in Jiang //et al//. (2009) and [[https://doi.org/10.1371/journal.ppat.1003121.s001|Figure S1]] in Singer //et al//. (2013).+Yes (//e.g.//, //X. euvesicatoria//, //X. citri//, //X. axonopodis//, //X. oryzae//, //X. oryzicola//, //X//. //fragariae//, //X//. //perforans, X. gardneri//, //X. campestris// pv. //campestris//, but not //X. campestris// pv. //raphani//, in some //X. arboricola// pathovars). See for example [[https://doi.org/10.1094/MPMI-22-11-1401|Table 2]] in Jiang //et al//. (2009) and [[https://doi.org/10.1371/journal.ppat.1003121.s001|Figure S1]] in Singer //et al//. (2013).
  
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
Line 71: Line 71:
 ===== References ===== ===== References =====
  
-Adlung N (2016). Charakterisierung der Avirulenzaktivität von XopQ und Identifizierung möglicher Interaktoren von XopL aus //Xanthomonas campestris//  pv. //vesicatoria//. Doctoral Thesis. Martin-Luther-Universität Halle-Wittenberg, Germany. PDF: [[https://d-nb.info/1116951061/34|d-nb.info/1116951061/34]]FIXME+Adlung N (2016). Charakterisierung der Avirulenzaktivität von XopQ und Identifizierung möglicher Interaktoren von XopL aus //Xanthomonas campestris// pv. //vesicatoria//. Doctoral Thesis. Martin-Luther-Universität Halle-Wittenberg, Germany. PDF: [[https://d-nb.info/1116951061/34|d-nb.info/1116951061/34]]FIXME
  
-Erickson JL, Adlung N, Lampe C, Bonas U, Schattat MH (2018). The //Xanthomonas//  effector XopL uncovers the role of microtubules in stromule extension and dynamics in //Nicotiana benthamiana//. Plant J. 93: 856-870. DOI:[[https://doi.org/10.1111/tpj.13813|10.1111/tpj.13813]]+Erickson JL, Adlung N, Lampe C, Bonas U, Schattat MH (2018). The //Xanthomonas// effector XopL uncovers the role of microtubules in stromule extension and dynamics in //Nicotiana benthamiana//. Plant J. 93: 856-870. DOI:[[https://doi.org/10.1111/tpj.13813|10.1111/tpj.13813]]
  
-Huang J, Dong Y, Li N, He Y, Zhou H (2024a). The type III effector XopL//<sub>Xcc</sub>  //  in //Xanthomonas campestris//  pv. //campestris//  targets the proton pump interactor 1 and suppresses innate immunity in //Arabidopsis//. Int. J. Mol. Sci. 25: 9175. DOI: [[https://doi.org/10.3390/ijms25179175|10.3390/ijms25179175]]+Huang J, Dong Y, Li N, He Y, Zhou H (2024a). The type III effector XopL//<sub>Xcc</sub>// in //Xanthomonas campestris// pv. //campestris// targets the proton pump interactor 1 and suppresses innate immunity in //Arabidopsis//. Int. J. Mol. Sci. 25: 9175. DOI: [[https://doi.org/10.3390/ijms25179175|10.3390/ijms25179175]]
  
-Huang J, Zhou H, Zhou M, Li N, Jiang B, He Y (2024b). Functional analysis of type III effectors in //Xanthomonas campestris//  pv. //campestris//  reveals distinct roles in modulating //Arabidopsis//  innate immunity. Pathogens 13: 448. DOI: [[https://doi.org/10.3390/pathogens13060448|10.3390/pathogens13060448]]+Huang J, Zhou H, Zhou M, Li N, Jiang B, He Y (2024b). Functional analysis of type III effectors in //Xanthomonas campestris// pv. //campestris// reveals distinct roles in modulating //Arabidopsis// innate immunity. Pathogens 13: 448. DOI: [[https://doi.org/10.3390/pathogens13060448|10.3390/pathogens13060448]]
  
-Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris//  pv //campestris//  and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]]+Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris// pv //campestris// and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]]
  
 Leong JX, Raffeiner M, Spinti D, Langin G, Franz-Wachtel M, Guzman AR, Kim JG, Pandey P, Minina AE, Macek B, Hafrén A, Bozkurt TO, Mudgett MB, Börnke F, Hofius D, Üstün S (2022). A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. EMBO J. 41: e110352. DOI: [[https://doi.org/10.15252/embj.2021110352|10.15252/embj.2021110352]] Leong JX, Raffeiner M, Spinti D, Langin G, Franz-Wachtel M, Guzman AR, Kim JG, Pandey P, Minina AE, Macek B, Hafrén A, Bozkurt TO, Mudgett MB, Börnke F, Hofius D, Üstün S (2022). A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. EMBO J. 41: e110352. DOI: [[https://doi.org/10.15252/embj.2021110352|10.15252/embj.2021110352]]
  
-Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae//  pv. //oryzae//  requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]+Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]
  
-Ma W, Xu X, Cai L, Cao Y, Haq F, Alfano JR, Zu B, Zou L, Chen G (2020) //.//  A //Xanthomonas oryzae//  type III effector XopL causes cell death through mediating ferredoxin degradation in //Nicotiana benthamiana//. Phytopathol Res. 2: 16. DOI: 10.1186/s42483-020-00055-w+Ma W, Xu X, Cai L, Cao Y, Haq F, Alfano JR, Zu B, Zou L, Chen G (2020). A //Xanthomonas oryzae// type III effector XopL causes cell death through mediating ferredoxin degradation in //Nicotiana benthamiana//. Phytopathol Res. 2: 16. DOI: 10.1186/s42483-020-00055-w
  
-Ortmann S, Marx J, Lampe C, Handrick V, Ehnert TM, Zinecker S, Reimers M, Bonas U, Erickson JL (2023). A conserved microtubule-binding region in //Xanthomonas//  XopL is indispensable for induced plant cell death reactions. PLoS Pathog. 19: e1011263. DOI: [[https://doi.org/10.1371/journal.ppat.1011263|10.1371/journal.ppat.1011263]]+Ortmann S, Marx J, Lampe C, Handrick V, Ehnert TM, Zinecker S, Reimers M, Bonas U, Erickson JL (2023). A conserved microtubule-binding region in //Xanthomonas// XopL is indispensable for induced plant cell death reactions. PLoS Pathog. 19: e1011263. DOI: [[https://doi.org/10.1371/journal.ppat.1011263|10.1371/journal.ppat.1011263]]
  
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria//  type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]+Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
 Singer AU, Schulze S, Skarina T, Xu X, Cui H, Eschen-Lippold L, Egler M, Srikumar T, Raught B, Lee J, Scheel D, Savchenko A, Bonas U (2013). A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog. 9: e1003121. DOI: [[https://doi.org/10.1371/journal.ppat.1003121|10.1371/journal.ppat.1003121]] Singer AU, Schulze S, Skarina T, Xu X, Cui H, Eschen-Lippold L, Egler M, Srikumar T, Raught B, Lee J, Scheel D, Savchenko A, Bonas U (2013). A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog. 9: e1003121. DOI: [[https://doi.org/10.1371/journal.ppat.1003121|10.1371/journal.ppat.1003121]]
  
-Soni M, Mondal KK. (2017). //Xanthomonas axonopodis//  pv. //punicae//  employs XopL effector to suppress pomegranate immunity. J. Integr. Plant Biol. 60: 341-357. DOI: [[https://doi.org/10.1111/jipb.12615|10.1111/jipb.12615]]+Soni M, Mondal KK. (2017). //Xanthomonas axonopodis// pv. //punicae// employs XopL effector to suppress pomegranate immunity. J. Integr. Plant Biol. 60: 341-357. DOI: [[https://doi.org/10.1111/jipb.12615|10.1111/jipb.12615]]
  
-Yan X, Tao J, Luo HL, Tan LT, Rong W, Li HP, He CZ (2019). A type III effector XopL<sub>Xcc8004</sub>  is vital for //Xanthomonas campestris//  pathovar //campestris//  to regulate plant immunity. Res. Microbiol. 170: 138-146. DOI: [[https://doi.org/10.1016/j.resmic.2018.12.001|10.1016/j.resmic.2018.12.001]]+Yan X, Tao J, Luo HL, Tan LT, Rong W, Li HP, He CZ (2019). A type III effector XopL<sub>Xcc8004</sub> is vital for //Xanthomonas campestris// pathovar //campestris// to regulate plant immunity. Res. Microbiol. 170: 138-146. DOI: [[https://doi.org/10.1016/j.resmic.2018.12.001|10.1016/j.resmic.2018.12.001]]
  
 ===== Acknowledgements ===== ===== Acknowledgements =====
bacteria/t3e/xopl.1738020225.txt.gz · Last modified: 2025/01/27 23:23 by jfpothier