This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
bacteria:t3e:xopj5 [2023/09/18 10:26] – [Biological function] rkoebnik | bacteria:t3e:xopj5 [2025/02/13 11:49] (current) – jfpothier | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== XopJ5 ====== | + | ====== |
Author: [[https:// | Author: [[https:// | ||
- | Internal reviewer: [[https:// | + | Internal reviewer: [[https:// |
- | Expert reviewer: FIXME | + | |
Class: XopJ\\ | Class: XopJ\\ | ||
Line 29: | Line 28: | ||
=== Phenotypes === | === Phenotypes === | ||
- | * AvrXccB (XopJ5< | + | * AvrXccB (XopJ5< |
- | * XopJ5 was found to be associated with variations in disease symptoms when testing a set of 45 //X. campestris //pv. // | + | * XopJ5 was found to be associated with variations in disease symptoms when testing a set of 45 //X. campestris// |
- | * Experimental evidence using heterologous expression of // | + | * Experimental evidence using heterologous expression of //avrXccB// suggests that this protein is involved in the suppression of plant immunity. Immunity suppression in // |
=== Localization === | === Localization === | ||
- | Plant plasma membrane, confirmed experimentally through GFP-tagged AvrXccB expression in transgenic // | + | Plant plasma membrane, confirmed experimentally through GFP-tagged AvrXccB expression in transgenic // |
=== Enzymatic function === | === Enzymatic function === | ||
- | Cysteine protease/ | + | Cysteine protease/ |
=== Interaction partners === | === Interaction partners === | ||
- | AvrXccB interacts with //S// ‐adenosyl‐L‐methionine‐dependent methyltransferases SAM‐MT1 and SAM‐MT2 in // | + | AvrXccB interacts with // |
===== Conservation ===== | ===== Conservation ===== | ||
Line 49: | Line 48: | ||
=== In xanthomonads === | === In xanthomonads === | ||
- | Yes. YopJ-like effectors such as AvrBsT in // | + | Yes. YopJ-like effectors such as AvrBsT in //Xcv// or //Xcc//, XopJ in //Xcv//. |
=== In other plant pathogens/ | === In other plant pathogens/ | ||
- | Yes. YopJ-like effectors HopZ1a in //P. syringae// | + | Yes. YopJ-like effectors HopZ1a in //P. syringae// and Pop2 in //R. solanacearum// |
===== References ===== | ===== References ===== | ||
- | da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two // | + | da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two // |
- | Guy E, Genissel A, Hajri A, Chabannes M, David P, Carrere S, Lautier M, Roux B, Boureau T, Arlat M, Poussier S, Noël LD (2013). Natural genetic variation of // | + | Guy E, Genissel A, Hajri A, Chabannes M, David P, Carrere S, Lautier M, Roux B, Boureau T, Arlat M, Poussier S, Noël LD (2013). Natural genetic variation of // |
- | Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in // | + | Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in // |
- | Liu L, Wang Y, Cui F, Fang A, Wang S, Wang J, Wei C, Li S, Sun W (2017). The type III effector AvrXccB in // | + | Liu L, Wang Y, Cui F, Fang A, Wang S, Wang J, Wei C, Li S, Sun W (2017). The type III effector AvrXccB in // |
- | Rongqi X, Xianzhen L, Hongyu W, Bole J, Kai L, Yongqiang H, Jiaxuan F, Jiliang T (2006). Regulation of eight // | + | Rongqi X, Xianzhen L, Hongyu W, Bole J, Kai L, Yongqiang H, Jiaxuan F, Jiliang T (2006). Regulation of eight //avr// by //hrpG// and //hrpX// in // |
- | Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from // | + | Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from // |
+ | |||
+ | ===== Acknowledgements ===== | ||
+ | |||
+ | This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology). | ||