User Tools

Site Tools


bacteria:t3e:xopi

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopi [2025/02/21 13:03] – [Biological function] rkoebnikbacteria:t3e:xopi [2025/07/04 23:35] (current) jfpothier
Line 1: Line 1:
 ====== The Type III Effector XopI from //Xanthomonas// ====== ====== The Type III Effector XopI from //Xanthomonas// ======
  
-Author: [[https://www.researchgate.net/profile/Joana_Costa12|Joana Costa]] & Trainees from the 2<sup>nd</sup> EuroXanth Training School (Maria Laura Destefanis, [[https://www.researchgate.net/profile/Katarina_Gasic|Katarina Gašić]], [[https://www.researchgate.net/profile/G_Licciardello|Grazia Licciardello]], Tamara Popović)\\ +Author: [[https://www.researchgate.net/profile/Joana_Costa12|Joana Costa]] & Trainees from the 2<sup>nd</sup>  EuroXanth Training School (Maria Laura Destefanis, [[https://www.researchgate.net/profile/Katarina_Gasic|Katarina Gašić]], [[https://www.researchgate.net/profile/G_Licciardello|Grazia Licciardello]], Tamara Popović)\\ 
-Internal reviewer: Isabel Rodrigues+Internal reviewer: [[https://www.researchgate.net/profile/Isabel-Rodrigues-12|Isabel Rodrigues]]\\
  
 Class: XopI\\ Class: XopI\\
Line 16: Line 16:
  
 Effector proteins (T3Es) can suppress the plant innate immunity and alter the plant metabolism to the pathogen’s advantage. The T3E XopI was identified in //Xcv// strain 85-10 due to a F-box motif based on the presence of a PIP (pathogen-inducible promoter) box in its promoter region. XopI secretion and translocation was shown during the interaction of //Xcv// with resistant pepper plants (Schulze //et al//., 2012). Moreover, interaction studies in yeast showed that XopI specifically interacts with one out of 21 //Arabidopsis thaliana// Skp1-like proteins (ASK), suggesting that upon infection, XopI integrates into particular Skp1-Cullin-F-box protein (SCF) which target proteins for ubiquitination (Salomon //et al//., 2011). A yeast-two-hybrid screen with XopI as bait identified five proteins, that presumably are involved in the regulation of stomatal movement. Silencing of two of these potential interactors confirmed that they mediate stomatal closure after PAMP treatment in //Nicotiana benthamiana//. In tomato plants, virulence of //xopI// knockout strains is dramatically reduced. The stomatal aperture is as well reduced, suggesting that XopI is essential for //Xcv// entry into the host plant apoplast. Stomata assays with stable xopI transgenic //N. benthamiana// lines showed, that XopI suppresses tomatal closure induced by different treatments, suggesting that XopI maybe affects different pathways of stomatal immunity (Nagel & Bonas, 2018). Effector proteins (T3Es) can suppress the plant innate immunity and alter the plant metabolism to the pathogen’s advantage. The T3E XopI was identified in //Xcv// strain 85-10 due to a F-box motif based on the presence of a PIP (pathogen-inducible promoter) box in its promoter region. XopI secretion and translocation was shown during the interaction of //Xcv// with resistant pepper plants (Schulze //et al//., 2012). Moreover, interaction studies in yeast showed that XopI specifically interacts with one out of 21 //Arabidopsis thaliana// Skp1-like proteins (ASK), suggesting that upon infection, XopI integrates into particular Skp1-Cullin-F-box protein (SCF) which target proteins for ubiquitination (Salomon //et al//., 2011). A yeast-two-hybrid screen with XopI as bait identified five proteins, that presumably are involved in the regulation of stomatal movement. Silencing of two of these potential interactors confirmed that they mediate stomatal closure after PAMP treatment in //Nicotiana benthamiana//. In tomato plants, virulence of //xopI// knockout strains is dramatically reduced. The stomatal aperture is as well reduced, suggesting that XopI is essential for //Xcv// entry into the host plant apoplast. Stomata assays with stable xopI transgenic //N. benthamiana// lines showed, that XopI suppresses tomatal closure induced by different treatments, suggesting that XopI maybe affects different pathways of stomatal immunity (Nagel & Bonas, 2018).
 +
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
Line 21: Line 22:
  
 XopI belongs to the translocation class of T3SS-secreted proteins, based on HpaB dependence (Büttner //et al.//, 2006). XopI belongs to the translocation class of T3SS-secreted proteins, based on HpaB dependence (Büttner //et al.//, 2006).
 +
 === Regulation === === Regulation ===
  
 XopI is presumably controlled by both HrpG and HrpX. The HrpX-dependent induction of //xopR// has been described previously (Koebnik //et al.//, 2006). HrpG‐ and HrpX‐dependent co‐regulation with the T3S system. XopI is presumably controlled by both HrpG and HrpX. The HrpX-dependent induction of //xopR// has been described previously (Koebnik //et al.//, 2006). HrpG‐ and HrpX‐dependent co‐regulation with the T3S system.
 +
 === Phenotypes === === Phenotypes ===
  
 Bacterial strains carrying deletions of XopI showed no difference in the induction of disease symptoms and the HR compared with wild-type strain 85-10 (Schulze //et al//., 2012). In tomato plants, virulence of xopI knockout strains is dramatically reduced. The stomatal aperture is as well reduced, suggesting that XopI is essential for Xcv entry into the host plant apoplast Bacterial strains carrying deletions of XopI showed no difference in the induction of disease symptoms and the HR compared with wild-type strain 85-10 (Schulze //et al//., 2012). In tomato plants, virulence of xopI knockout strains is dramatically reduced. The stomatal aperture is as well reduced, suggesting that XopI is essential for Xcv entry into the host plant apoplast
 +
 === Localization === === Localization ===
  
-XopI is translocated by the 85*Δ//hpaB// strain, that belong to the class B.+XopI is translocated by the 85*Δ//hpaB// strain, thus belonging to the class B (Büttner //et al.//, 2006). 
 === Enzymatic function === === Enzymatic function ===
  
-These phenotypes can be ascribed either to the virulence activity of the effectors in plant cells, or to their recognition by the plant surveillance system. As shown in [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883825/figure/f0001/|**Fig. 1A**]] and [[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883825/table/t0001/|**Table 1**]], the XopE1, XopF2, XopH, **XopI**, XopM, XopQ, XopV, AvrBs1 and AvrXv4 effectors partially or fully inhibited cell death triggered by at least one of the cell death inducers.+The T3Es XopE1, XopF2, XopH, **XopI**, XopM, XopQ, XopV, AvrBs1 and AvrXv4 partially or fully inhibited cell death triggered by at least one of the cell death inducers (Teper //et al.//, 2015). 
 === Interaction partners === === Interaction partners ===
  
-XopR and XopS belong to //Xcv// translocation class A, comprising T3Es whose translocation into plant cells is completely dependent on HpaB, whereas XopB, XopG, **XopI**, XopK, XopM and XopV were assigned to class B, because they are still translocated in the absence of HpaB (Büttner //et al.//, 2006). Both new class A effectors lack homology to known proteins or motifs, so that their molecular function remains elusive. By contrast, the class B effectors comprise the putative enzyme XopG, a member of the HopH family of putative zinc metalloproteases. Other effectors possess interesting features, for example XopI contains an F‐box motif typical for eukaryotic proteins playing a role in the ubiquitin‐26S proteasome system (UPS). The UPS controls protein stability in eukaryotes and appears to be a favorable target for many T3Es, for example members of the GALA family, which strongly contribute to the virulence of //R. solanacearum// and the E3 ubiquitin ligase AvrPtoB from //P. syringae.//+XopR and XopS belong to //Xcv// translocation class A, comprising T3Es whose translocation into plant cells depends on HpaB, whereas XopB, XopG, **XopI**, XopK, XopM and XopV were assigned to class B, because they are still translocated in the absence of HpaB (Büttner //et al.//, 2006). Both new class A effectors lack homology to known proteins or motifs, so that their molecular function remains elusive. By contrast, the class B effectors comprise the putative enzyme XopG, a member of the HopH family of putative zinc metalloproteases. Other effectors possess interesting features, for example XopI contains an F‐box motif typical for eukaryotic proteins playing a role in the ubiquitin‐26S proteasome system (UPS). The UPS controls protein stability in eukaryotes and appears to be a favorable target for many T3Es, for example members of the GALA family, which strongly contribute to the virulence of //R. solanacearum// and the E3 ubiquitin ligase AvrPtoB from //P. syringae.//
  
 ===== Conservation ===== ===== Conservation =====
bacteria/t3e/xopi.1740143016.txt.gz · Last modified: 2025/02/21 13:03 by rkoebnik