User Tools

Site Tools


bacteria:t3e:xopg

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopg [2023/01/09 10:20] – external edit 127.0.0.1bacteria:t3e:xopg [2025/07/04 23:34] (current) jfpothier
Line 1: Line 1:
-====== XopG ======+====== The Type III Effector XopG from //Xanthomonas// ======
  
-Author: [[https://www.researchgate.net/profile/Camila_Fernandes2|Camila Ferdandes]]\\+Author: [[https://www.researchgate.net/profile/Camila_Fernandes2|Camila Fernandes]]\\
 Internal reviewer: [[https://www.researchgate.net/profile/Leonor_Martins|Leonor Martins]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Leonor_Martins|Leonor Martins]]\\
-Expert reviewer: [[https://scholar.google.com/citations?user=YqEpuD0AAAAJ&hl=en|Neha Potnis]]+Expert reviewer: [[https://scholar.google.com/citations?user=YqEpuD0AAAAJ&hl=en|Neha Potnis]]\\
  
 Class: XopG\\ Class: XopG\\
-Family: XopG1, XopG2, XopG3\\ +Families: XopG1, XopG2, XopG3\\ 
-Prototype: XopG (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\ +Prototype: XCV1298 (XopG1) (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\ 
-RefSeq ID: [[http://ensemblgenomes.org/id/CAJ22929|CAJ22929]] (213 aa)\\+GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ22929.1|CAJ22929.1]] (213 aa)\\ 
 +RefSeq ID: XopG1 [[https://www.ncbi.nlm.nih.gov/protein/WP_011346758.1|WP_011346758.1]] (213 aa), XopG2 [[https://www.ncbi.nlm.nih.gov/protein/WP_011038360.1|WP_011038360.1]] (207 aa), XopG3 [[https://www.ncbi.nlm.nih.gov/protein/WP_084217840.1|WP_084217840.1]] (226 aa)\\
 3D structure: [[https://swissmodel.expasy.org/repository/uniprot/Q3BW34|Q3BW34]] (homology model) 3D structure: [[https://swissmodel.expasy.org/repository/uniprot/Q3BW34|Q3BW34]] (homology model)
  
Line 15: Line 16:
 === How discovered? === === How discovered? ===
  
-XopG was identified based on homology searches using TBLASTN analysis. Known T3E proteins from plant and animal pathogens were used as query against all contigs of the draft genomes of //X. vesicatoria//, //X. gardneri// and //X. perforans// with e-value of 10<sup>-5 </sup>  (Potnis //et al//., 2011).+XopG was identified based on homology searches using TBLASTN analysis. Known T3E proteins from plant and animal pathogens were used as query against all contigs of the draft genomes of //X. vesicatoria//, //X. gardneri// and //X. perforans// with e-value of 10<sup>-5</sup>  (Potnis //et al//., 2011). 
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
 The T3SS-dependent translocation evidence for XopG protein was confirmed using the AvrBs2 reporter gene assay (Thieme, 2006; Potnis //et al//., 2011). The T3SS-dependent translocation evidence for XopG protein was confirmed using the AvrBs2 reporter gene assay (Thieme, 2006; Potnis //et al//., 2011).
 +
 === Regulation === === Regulation ===
  
 XopG belongs to translocation class B and is still translocated in the absence of HpaB, being constitutively expressed (Schulze et al. 2012). XopG was identified as part of the putative HrpX regulon in //X. campestris// pv. //campestris// ATCC339138 (da Silva //et al//., 2002; White //et al//., 2009). XopG belongs to translocation class B and is still translocated in the absence of HpaB, being constitutively expressed (Schulze et al. 2012). XopG was identified as part of the putative HrpX regulon in //X. campestris// pv. //campestris// ATCC339138 (da Silva //et al//., 2002; White //et al//., 2009).
 +
 === Phenotypes === === Phenotypes ===
  
Line 27: Line 31:
  
 //Agrobacterium//-mediated transient expression of both XopQ and XopX in rice cells resulted in induction of rice immune responses, which were not observed when either protein was individually expressed. A screen for //Xanthomonas// effectors which can suppress XopQ-XopX induced rice immune responses, led to the identification of five effectors, namely XopU, XopV, XopP, XopG and AvrBs2, that could individually suppress these immune responses. These results suggest a complex interplay of //Xanthomonas// T3SS effectors in suppression of both pathogen-triggered immunity and effector-triggered immunity to promote virulence on rice (Deb //et al.//, 2020). //Agrobacterium//-mediated transient expression of both XopQ and XopX in rice cells resulted in induction of rice immune responses, which were not observed when either protein was individually expressed. A screen for //Xanthomonas// effectors which can suppress XopQ-XopX induced rice immune responses, led to the identification of five effectors, namely XopU, XopV, XopP, XopG and AvrBs2, that could individually suppress these immune responses. These results suggest a complex interplay of //Xanthomonas// T3SS effectors in suppression of both pathogen-triggered immunity and effector-triggered immunity to promote virulence on rice (Deb //et al.//, 2020).
 +
 === Localization === === Localization ===
  
Line 43: Line 48:
  
 Yes (//e.g.//, //X. arboricola//, //X. campestris//, //X. citri//, //X.// //euvesicatoria//, //X. gardneri//, //X. oryzae////, // //X. translucens//, //X. vesicatoria//). Yes (//e.g.//, //X. arboricola//, //X. campestris//, //X. citri//, //X.// //euvesicatoria//, //X. gardneri//, //X. oryzae////, // //X. translucens//, //X. vesicatoria//).
 +
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
 Yes (//Ralstonia solanacearum//, //Pseudomonas// spp., //Acidovorax citrulli//). Yes (//Ralstonia solanacearum//, //Pseudomonas// spp., //Acidovorax citrulli//).
 +
 ===== References ===== ===== References =====
  
 da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificities. Nature 417: 459-463. DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]] da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificities. Nature 417: 459-463. DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]]
  
-Deb S, Ghosh P, Patel HK, Sonti RV (2020). Interaction of the //Xanthomonas// effectors XopQ and XopX results in induction of rice immune responses. Plant J., in press. DOI: [[https://doi.org/10.1111/tpj.14924|10.1111/tpj.14924]]+Deb S, Ghosh P, Patel HK, Sonti RV (2020). Interaction of the //Xanthomonas// effectors XopQ and XopX results in induction of rice immune responses. Plant J. 104: 332-350. DOI: [[https://doi.org/10.1111/tpj.14924|10.1111/tpj.14924]]
  
 Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol MT, White FF, Preston JF, Vinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics 12: 146. DOI: [[https://doi.org/10.1186/1471-2164-12-146|10.1186/1471-2164-12-146]] Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol MT, White FF, Preston JF, Vinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics 12: 146. DOI: [[https://doi.org/10.1186/1471-2164-12-146|10.1186/1471-2164-12-146]]
Line 61: Line 68:
  
 White FF, Potnis N, Jones JB, Koebnik R (2009). The type III effectors of //Xanthomonas//. Mol. Plant Pathol.10: 749-766. DOI: [[https://doi.org/10.1111/j.1364-3703.2009.00590.x|10.1111/j.1364-3703.2009.00590.x]] White FF, Potnis N, Jones JB, Koebnik R (2009). The type III effectors of //Xanthomonas//. Mol. Plant Pathol.10: 749-766. DOI: [[https://doi.org/10.1111/j.1364-3703.2009.00590.x|10.1111/j.1364-3703.2009.00590.x]]
 +
 +===== Acknowledgements =====
 +
 +This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/xopg.1673259603.txt.gz · Last modified: 2023/01/09 10:20 by 127.0.0.1