User Tools

Site Tools


bacteria:t3e:xopf

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopf [2024/08/06 14:08] – [XopF] rkoebnikbacteria:t3e:xopf [2025/02/13 11:31] (current) jfpothier
Line 1: Line 1:
-====== The Type III Effector XopF from Xanthomonas ======+====== The Type III Effector XopF from //Xanthomonas// ======
  
 Author: [[https://www.researchgate.net/profile/Leonor_Martins|Leonor Martins]]\\ Author: [[https://www.researchgate.net/profile/Leonor_Martins|Leonor Martins]]\\
Line 6: Line 6:
  
 Class: XopF\\ Class: XopF\\
-Family: XopF1, XopF2\\ +Families: XopF1, XopF2, XopF3\\ 
-Prototype: XCV0414 (XopF1) (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris //pv. //vesicatoria//; strain 85-10)\\+Prototype: XCV0414 (XopF1) (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\
 GenBank ID (XopF1): [[https://www.ncbi.nlm.nih.gov/protein/CAJ22045.1|CAJ22045.1]] (670 aa)\\ GenBank ID (XopF1): [[https://www.ncbi.nlm.nih.gov/protein/CAJ22045.1|CAJ22045.1]] (670 aa)\\
 GenBank ID (XopF2): [[https://www.ncbi.nlm.nih.gov/protein/AAV74205.1|AAV74205.1]] (667 aa)\\ GenBank ID (XopF2): [[https://www.ncbi.nlm.nih.gov/protein/AAV74205.1|AAV74205.1]] (667 aa)\\
Line 31: Line 31:
 RT-PCR analysis revealed //xopF1// is regulated by //hrpG// and //hrpX// and that //xopF1//, //hpaD//, //hpaI// belong to the same operon. Upstream there is a PIP box which provides binding site for HrpX (Büttner //et al//., 2007). RT-PCR analysis revealed //xopF1// is regulated by //hrpG// and //hrpX// and that //xopF1//, //hpaD//, //hpaI// belong to the same operon. Upstream there is a PIP box which provides binding site for HrpX (Büttner //et al//., 2007).
  
-qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//), including //xopF//, were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup>  (Liu //et al.//, 2016).+qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes //hrpG// and //hrpX//), including //xopF//, were significantly reduced in the //Xanthomonas oryzae// pv. //oryzae// Δ//xrvC// mutant compared with those in the wild-type strain PXO99<sup>A</sup> (Liu //et al.//, 2016).
 === Phenotypes === === Phenotypes ===
  
-  * Roden et al. did not find significant growth defects of a //Xcv//  Δ//xopF1//  or Δ//xopF2//  mutant in susceptible pepper and tomato leaves (Roden //et al.//, 2004) +  * Roden et al. did not find significant growth defects of a //Xcv// Δ//xopF1// or Δ//xopF2// mutant in susceptible pepper and tomato leaves (Roden //et al.//, 2004) 
-  * To study the possible virulence function of the putative //xopF1//  operon encoding HpaD, HpaI, and XopF1 these three genes were deleted from the genome of //Xcv //85-10. The resultant mutant strain 85-10Δ//EF//  displayed a wild-type phenotype when infiltrated into susceptible and resistant plants. To investigate a possible functional redundancy due to homologous genes, //xopF2//  and the flanking ORF //XCV2943//  were also deleted in strain 85-10Δ//EF//. Since the resulting multiple mutant strain 85-10Δ//EF//Δ//xopF2//  also behaved like the wild type in infection tests//, xopF1//  and //xopF2//  regions did not seem to play an obvious role in the bacterial interaction with the host plant (Büttner //et al//., 2007). +  * To study the possible virulence function of the putative //xopF1// operon encoding HpaD, HpaI, and XopF1 these three genes were deleted from the genome of //Xcv// 85-10. The resultant mutant strain 85-10Δ//EF// displayed a wild-type phenotype when infiltrated into susceptible and resistant plants. To investigate a possible functional redundancy due to homologous genes, //xopF2// and the flanking ORF //XCV2943// were also deleted in strain 85-10Δ//EF//. Since the resulting multiple mutant strain 85-10Δ//EF//Δ//xopF2// also behaved like the wild type in infection tests//, xopF1// and //xopF2// regions did not seem to play an obvious role in the bacterial interaction with the host plant (Büttner //et al//., 2007). 
-  * Later, //Xoo//  XopF1 was proven to contribute to virulence in rice, as infection with //xopF1//  mutant has shown a reduced lesion size comparing to wild type (Mondal //et al//., 2016). +  * Later, //Xoo// XopF1 was proven to contribute to virulence in rice, as infection with //xopF1// mutant has shown a reduced lesion size comparing to wild type (Mondal //et al//., 2016). 
-  * Additionally, XopF1 and XopF2 of //X. euvesicatoria//  and //Xoo//  seem to have a role in PTI suppression //in planta//, namely by inhibiting callose deposition and by suppressing the induction of PTI marker genes, overall contributing to development of symptoms (Mondal //et al//., 2016; Popov //et al//., 2016). +  * Additionally, XopF1 and XopF2 of //X. euvesicatoria// and //Xoo// seem to have a role in PTI suppression //in planta//, namely by inhibiting callose deposition and by suppressing the induction of PTI marker genes, overall contributing to development of symptoms (Mondal //et al//., 2016; Popov //et al//., 2016). 
-  * //Xoo//  XopF1 triggered an HR in non-host plants (Li //et al//., 2016).+  * //Xoo// XopF1 triggered an HR in non-host plants (Li //et al//., 2016).
 === Localization === === Localization ===
  
-XopF2 localizes in the Golgi apparatus, while XopF1 has been found in cytoplasm (Popov //et al//., 2016) and plasma membrane (Mondal //et al//., 2016). XopF1 is encoded within //hrp//  region, between //hpaB//  and //hrpF//, while XopF2 is encoded elsewhere in the bacterial chromosome (Roden //et al//., 2004; Büttner //et al//., 2007).+XopF2 localizes in the Golgi apparatus, while XopF1 has been found in cytoplasm (Popov //et al//., 2016) and plasma membrane (Mondal //et al//., 2016). XopF1 is encoded within //hrp// region, between //hpaB// and //hrpF//, while XopF2 is encoded elsewhere in the bacterial chromosome (Roden //et al//., 2004; Büttner //et al//., 2007).
  
 === Enzymatic function === === Enzymatic function ===
Line 55: Line 55:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.//, //X. arboricola, X. bromi//, //X. citri, X. oryzae//  pv.// oryzae//, //X. euvesicatoria//, //X. translucens//, //X. vasicola//). Since the G+C content of the //xopF1//  gene is similar to that of the //Xcv//  //hrp//  gene cluster, it may be a member of a “core” group of //Xanthomonas//  spp. effectors (Roden //et al.//, 2004).+Yes (//e.g.//, //X. arboricola, X. bromi//, //X. citri, X. oryzae// pv. //oryzae//, //X. euvesicatoria//, //X. translucens//, //X. vasicola//). Since the G+C content of the //xopF1// gene is similar to that of the //Xcv// //hrp// gene cluster, it may be a member of a “core” group of //Xanthomonas// spp. effectors (Roden //et al.//, 2004).
  
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
Line 63: Line 63:
 ===== References ===== ===== References =====
  
-Büttner D, Lorenz C, Weber E, Bonas U (2006). Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from //Xanthomonas campestris//  pv. //vesicatoria//. Mol. Microbiol. 59: 513-527. DOI: [[https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2958.2005.04924.x|10.1111/j.1365-2958.2005.04924.x]]+Büttner D, Lorenz C, Weber E, Bonas U (2006). Targeting of two effector protein classes to the type III secretion system by a HpaC- and HpaB-dependent protein complex from //Xanthomonas campestris// pv. //vesicatoria//. Mol. Microbiol. 59: 513-527. DOI: [[https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2958.2005.04924.x|10.1111/j.1365-2958.2005.04924.x]]
  
-Büttner D, Noël L, Stuttmann J, Bonas U (2007). Characterization of the nonconserved //hpaB//-//hrpF//  region in the //hrp//  pathogenicity island from //Xanthomonas campestris//  pv. //vesicatoria.//  Mol. Plant Microbe Interact. 20: 1063-1074. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-20-9-1063|10.1094/MPMI-20-9-1063]]+Büttner D, Noël L, Stuttmann J, Bonas U (2007). Characterization of the nonconserved //hpaB//-//hrpF// region in the //hrp// pathogenicity island from //Xanthomonas campestris// pv. //vesicatoria.// Mol. Plant Microbe Interact. 20: 1063-1074. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-20-9-1063|10.1094/MPMI-20-9-1063]]
  
-Li S, Wang Y, Wang S, Fang A, Wang J, Liu L, Zhang K, Mao Y, Sun W (2015). The type III effector AvrBs2 in //Xanthomonas oryzae//  pv. //oryzicola//  suppresses rice immunity and promotes disease development. Mol. Plant Microbe Interact. 28: 869-880. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-10-14-0314-R|10.1094/MPMI-10-14-0314-R]]+Li S, Wang Y, Wang S, Fang A, Wang J, Liu L, Zhang K, Mao Y, Sun W (2015). The type III effector AvrBs2 in //Xanthomonas oryzae// pv. //oryzicola// suppresses rice immunity and promotes disease development. Mol. Plant Microbe Interact. 28: 869-880. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-10-14-0314-R|10.1094/MPMI-10-14-0314-R]]
  
-Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae//  pv. //oryzae//  requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]+Liu Y, Long J, Shen D, Song C (2016). //Xanthomonas oryzae// pv. //oryzae// requires H-NS-family protein XrvC to regulate virulence during rice infection. FEMS Microbiol. Lett. 363: fnw067. DOI: [[https://doi.org/10.1093/femsle/fnw067|10.1093/femsle/fnw067]]
  
-Mondal K K, Verma G, Manju, Junaid A, Mani C (2016). Rice pathogen //Xanthomonas oryzae//  pv. //oryzae//  employs inducible hrp-dependent XopF type III effector protein for its growth, pathogenicity and for suppression of PTI response to induce blight disease. Eur. J. Plant Pathol. 144: 311-323. DOI: [[https://link.springer.com/article/10.1007/s10658-015-0768-7|10.1007/s10658-015-0768-7]]+Mondal K K, Verma G, Manju, Junaid A, Mani C (2016). Rice pathogen //Xanthomonas oryzae// pv. //oryzae// employs inducible hrp-dependent XopF type III effector protein for its growth, pathogenicity and for suppression of PTI response to induce blight disease. Eur. J. Plant Pathol. 144: 311-323. DOI: [[https://link.springer.com/article/10.1007/s10658-015-0768-7|10.1007/s10658-015-0768-7]]
  
-Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria//  type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]+Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://apsjournals.apsnet.org/doi/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
-Roden J, Belt B, Ross J, Tachibana T, Vargas J, Mudgett M (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas//  infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://www.pnas.org/content/101/47/16624|10.1073/pnas.0407383101]]+Roden J, Belt B, Ross J, Tachibana T, Vargas J, Mudgett M (2004). A genetic screen to isolate type III effectors translocated into pepper cells during //Xanthomonas// infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. DOI: [[https://www.pnas.org/content/101/47/16624|10.1073/pnas.0407383101]]
  
 ===== Further reading ===== ===== Further reading =====
  
-Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of Xanthomonas campestris pv. //vesicatoria//  type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24: 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]]+Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas campestris// pv. //vesicatoria// type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24: 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]] 
 + 
 +===== Acknowledgements ===== 
 + 
 +This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/xopf.1722949711.txt.gz · Last modified: 2024/08/06 14:08 by rkoebnik