User Tools

Site Tools


bacteria:t3e:xope3

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xope3 [2020/09/17 17:24] – [Biological function] setubalbacteria:t3e:xope3 [2025/02/12 23:55] (current) jfpothier
Line 1: Line 1:
-====== XopE3 ======+====== The Type III Effector XopE3 from //Xanthomonas// ======
  
 Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\ Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\
Line 7: Line 7:
 Class: XopE\\ Class: XopE\\
 Family: XopE3\\ Family: XopE3\\
-Prototype: XAC3224 (//Xanthomonas citri// pv. //citri//)\\+Prototype: XAC3224 (//Xanthomonas citri// pv. //citri//; strain 306)\\ 
 +GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/AAM38068.1|AAM38068.1]] (356 aa)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011052114.1|WP_011052114.1]] (356 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011052114.1|WP_011052114.1]] (356 aa)\\
-Synonym: AvrXacE2 (//Xanthomonas citri //pv. //citri//)\\+Synonym: AvrXacE2 (//Xanthomonas citri// pv. //citri//)\\
 3D structure: Contains a catalytic triad of cysteine, histidine and aspartic acid, and have been grouped with peptide N-glycanases (PNGases, members of the transglutaminase protein superfamily). XopE3 contains N-myristoylation motifs (Dunger //et al//., 2012). 3D structure: Contains a catalytic triad of cysteine, histidine and aspartic acid, and have been grouped with peptide N-glycanases (PNGases, members of the transglutaminase protein superfamily). XopE3 contains N-myristoylation motifs (Dunger //et al//., 2012).
 ===== Biological function ===== ===== Biological function =====
Line 15: Line 16:
 === How discovered? === === How discovered? ===
  
-The gene coding for XopE3 (avrXacE2) was first identified in the genome annotation of //Xanthomonas citri //subsp. //citri //A306 (da Silva //et al//., 2002).+The gene coding for XopE3 (avrXacE2) was first identified in the genome annotation of //Xanthomonas citri// subsp. //citri// A306 (da Silva //et al//., 2002).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
Line 22: Line 23:
 === Regulation === === Regulation ===
  
-avrXacE2 was shown to be regulated by HrpG regulon in X. citri (Guo //et al//., 2011). This effector does not contain PIP box-like sequences.+avrXacE2 was shown to be regulated by HrpG regulon in //X. citri// (Guo //et al//., 2011). This effector does not contain PIP box-like sequences.
 === Phenotypes === === Phenotypes ===
  
Line 34: Line 35:
 === Interaction partners === === Interaction partners ===
  
-In //X. citri //subsp. //citri //A306 the gene coding for XopE3 is in a region hypothesized to be a genomic island (Moreira et al., 2010). This region or parts of it are conserved in many Xanthomonas strains, as shown by a genomic neighborhood search in the Integrated Microbial Genomes platform. In particular, in this search gene XAC3225 is nearly always adjacent to XAC3224 (xopE3), suggesting that the protein coded by XAC3225 is an interaction partner of XopE3. Moreira et al. (2010) commented on this as follows: "Next to xopE3 (XAC3224) we find gene\\ +In //X. citri// subsp. //citri// A306 the gene coding for XopE3 is in a region hypothesized to be a genomic island (Moreira //et al.//, 2010). This region or parts of it are conserved in many //Xanthomonas// strains, as shown by a genomic neighborhood search in the Integrated Microbial Genomes platform. In particular, in this search gene XAC3225 is nearly always adjacent to XAC3224 (//xopE3//), suggesting that the protein coded by XAC3225 is an interaction partner of XopE3. Moreira //et al.// (2010) commented on this as follows: "Next to //xopE3// (XAC3224) we find gene XAC3225, whose product is annotated as tranglycosylase //mltB//. This gene has strong similarity (e-value 10<sup>-133</sup>, 100% coverage) to //hopAJ1// from //P. syringae// pv. //tomato// strain DC3000, where it is annotated as a T3SS helper protein. Although the //hopAJ1// gene is not itself a T3SS substrate, it contributes to effector translocation (Oh //et al.//, 2007). A mutant with a deletion of XAC3225 has reduced ability to cause canker (mutant phenotypes include a reduction in water soaking, hyperplasia, and necrosis compared to wild type) (Laia //et al.//, 2009)".
-XAC3225, whose product is annotated as tranglycosylase mltB. This gene has strong similarity (e-value 10-133, 100% coverage) to hopAJ1 from //P. syringae// pv. //tomato// strain DC3000, where it is annotated as a T3SS helper protein. Although the hopAJ1 gene is not itself a T3SS substrate, it contributes to effector translocation [50]. A mutant with a deletion of XAC3225 has reduced ability to cause canker (mutant phenotypes include a reduction in water soaking, hyperplasia, and necrosis compared to wild type) [31]." +
- +
-[31] Laia ML, Moreira LM, Dezajacomo J, Brigati JB, Ferreira CB, Ferro MI, Silva AC, Ferro JA, Oliveira JC: New genes of Xanthomonas citri subspcitri involved in pathogenesis and adaptation revealed by a transposonbased mutant library. BMC Microbiol 2009, 9:12. +
- +
-[50] Oh HS, Kvitko BH, Morello JE, Collmer A: Pseudomonas syringae lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cells. J Bacteriol 2007, 189(22):8277-8289. +
 ===== Conservation ===== ===== Conservation =====
  
Line 51: Line 46:
 ===== References ===== ===== References =====
  
-da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificities. Nature 417: 459-463. DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]].+da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificities. Nature 417: 459-463. DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]] 
 + 
 +Dunger G, Garofalo CG, Gottig N, Garavaglia BS, Rosa MC, Farah CS, Orellano EG, Ottado J (2012)Analysis of three //Xanthomonas axonopodis// pv. citri effector proteins in pathogenicity and their interactions with host plant proteins. Mol. Plant Pathol. 13: 865-876. DOI: [[https://doi.org/10.1111/j.1364-3703.2012.00797.x|10.1111/j.1364-3703.2012.00797.x]] 
 + 
 +Guo Y, Figueiredo F, Jones J, Wang N (2011). HrpG and HrpX play global roles in coordinating different virulence traits of //Xanthomonas axonopodis// pv. citri. Mol Plant Microbe Interact. 24: 649-661. DOI: [[https://doi.org/10.1094/MPMI-09-10-0209|10.1094/MPMI-09-10-0209]] 
 + 
 +Laia ML, Moreira LM, Dezajacomo J, Brigati JB, Ferreira CB, Ferro MI, Silva AC, Ferro JA, Oliveira JC (2009). New genes of //Xanthomonas citri// subsp. //citri// involved in pathogenesis and adaptation revealed by a transposon-based mutant library. BMC Microbiol. 9: 12. DOI: [[https://doi.org/10.1186/1471-2180-9-12|10.1186/1471-2180-9-12]] 
 + 
 +Moreira LM, Almeida NF, Potnis N, Digiampietri LA, Adi SS, Bortolossi JC, da Silva AC, da Silva AM, de Moraes FE, de Oliveira JC, de Souza RF (2010). Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of //Xanthomonas fuscans// subsp. //aurantifolii//. BMC Genomics 11: 238. DOI: [[https://doi.org/10.1186/1471-2164-11-238|10.1186/1471-2164-11-238]]
  
-Dunger GGarofalo CGGottig NGaravaglia BSRosa MC, Farah CS, Orellano EG, Ottado J (2012). Analysis of three //Xanthomonas axonopodis// pv. citri effector proteins in pathogenicity and their interactions with host plant proteins. Mol. Plant Pathol13865-876. DOI: [[https://doi.org/10.1111/j.1364-3703.2012.00797.x|10.1111/j.1364-3703.2012.00797.x]].+Nimchuk ZLFisher EJDesvaux DChang JHDangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant Microbe Interact20346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]]
  
-Guo YFigueiredo FJones JWang N (2011). HrpG and HrpX play global roles in coordinating different virulence traits of //Xanthomonas axonopodis// pvcitriMol Plant Microbe Interact24649-661. DOI: [[https://doi.org/10.1094/MPMI-09-10-0209|10.1094/MPMI-09-10-0209]].+Oh HSKvitko BHMorello JECollmer A (2007). //Pseudomonas syringae// lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cellsJBacteriol1898277-8289. DOI: [[https://doi.org/10.1128/JB.00998-07|10.1128/JB.00998-07]]
  
-Moreira LM, Almeida NF, Potnis N, Digiampietri LA, Adi SS, Bortolossi JC, da Silva AC, da Silva AM, de Moraes FE, de Oliveira JC, de Souza RF (2010). Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii. BMC Genomics 11: 238. DOI: [[https://doi.org/10.1186/1471-2164-11-238|10.1186/1471-2164-11-238]].+===== Acknowledgements =====
  
-Nimchuk ZLFisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunction. Mol. Plant Microbe Interact. 20: 346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]].+This fact sheet is based upon work from COST Action CA16107 EuroXanthsupported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/xope3.1600359892.txt.gz · Last modified: 2023/01/09 10:20 (external edit)