This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
bacteria:t3e:xope2 [2024/08/06 14:54] – rkoebnik | bacteria:t3e:xope2 [2025/02/12 23:54] (current) – jfpothier | ||
---|---|---|---|
Line 3: | Line 3: | ||
Author: [[https:// | Author: [[https:// | ||
Internal reviewer: [[https:// | Internal reviewer: [[https:// | ||
- | Expert reviewer: | + | Expert reviewer: |
Class: XopE\\ | Class: XopE\\ | ||
Line 12: | Line 12: | ||
Synonym: AvrXacE3 (// | Synonym: AvrXacE3 (// | ||
3D structure: Myristoylation motif at the extreme N terminus (Thieme //et al.//, 2007). | 3D structure: Myristoylation motif at the extreme N terminus (Thieme //et al.//, 2007). | ||
+ | |||
===== Biological function ===== | ===== Biological function ===== | ||
Line 25: | Line 26: | ||
=== Phenotypes === | === Phenotypes === | ||
- | * XopE2 shows an avirulence activity in //Solanum pseudocapsicum// | + | * XopE2 shows an avirulence activity in //Solanum pseudocapsicum// |
- | * // | + | * // |
- | * XopE2 proteins were shown to be capable of suppressing the hypersensitive response (HR) of // | + | * XopE2 proteins were shown to be capable of suppressing the hypersensitive response (HR) of // |
* XopE2 inhibits growth of yeast cells in the presence of sodium chloride and caffeine (Salomon //et al//., 2011). | * XopE2 inhibits growth of yeast cells in the presence of sodium chloride and caffeine (Salomon //et al//., 2011). | ||
* Expression of XopE2 in yeast affects the yeast cell wall and the endoplasmic reticulum stress response (Bosis //et al//., 2011). | * Expression of XopE2 in yeast affects the yeast cell wall and the endoplasmic reticulum stress response (Bosis //et al//., 2011). | ||
- | * XopE2 appears to promote wall-bound invertase activity in pepprt | + | * XopE2 appears to promote wall-bound invertase activity in pepper |
- | * XopE2 mutants grow to equivalent titers as wild type //X. euvesicatoria// | + | * XopE2 mutants grow to equivalent titers as wild type //X. euvesicatoria// |
- | * XopE2 inhibits the activation of a PTI-inducible promoter by the bacterial peptide elf18 in // | + | * XopE2 inhibits the activation of a PTI-inducible promoter by the bacterial peptide elf18 in // |
+ | * XopE2//< | ||
+ | * Proper subcellular localization of XopE2//< | ||
=== Localization === | === Localization === | ||
- | XopE2 fused to GFP in a binary vector under control of the Cauliflower mosaic virus 35S promoter expressed in //Nicotiana benthamiana// | + | XopE2 fused to GFP in a binary vector under control of the Cauliflower mosaic virus 35S promoter expressed in //Nicotiana benthamiana// |
=== Enzymatic function === | === Enzymatic function === | ||
Line 44: | Line 47: | ||
=== Interaction partners === | === Interaction partners === | ||
- | XopE2 was found to physically interact with tomato 14-3-3 (TFT) proteins. XopE2 is phosphorylated at multiple residues //in planta //for maximal binding to TFT10 (Dubrow //et al//., 2018). | + | XopE2 was found to physically interact with tomato 14-3-3 (TFT) proteins. XopE2 is phosphorylated at multiple residues //in planta// for maximal binding to TFT10 (Dubrow //et al//., 2018). |
===== Conservation ===== | ===== Conservation ===== | ||
Line 62: | Line 65: | ||
Bosis E, Salomon D, Sessa G (2011). A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins. PLoS One 6: e27698. DOI: [[https:// | Bosis E, Salomon D, Sessa G (2011). A simple yeast-based strategy to identify host cellular processes targeted by bacterial effector proteins. PLoS One 6: e27698. DOI: [[https:// | ||
- | da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two // | + | da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two // |
+ | |||
+ | Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for //Xv3// disease resistance and interact with a subset of // | ||
- | Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan | + | Huang J, Zhou H, Zhou M, Li N, Jiang B, He Y (2024). Functional analysis of type III effectors in //Xanthomonas campestris// pv. //campestris// reveals distinct roles in modulating |
- | Lin RH, Peng CW, Lin YC, Peng HL, Huang HC (2011). The XopE2 effector protein of // | + | Lin RH, Peng CW, Lin YC, Peng HL, Huang HC (2011). The XopE2 effector protein of // |
- | Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of // | + | Nimchuk ZL, Fisher EJ, Desvaux D, Chang JH, Dangl JL (2007). The HopX (AvrPphE) family of // |
- | Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple // | + | Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple // |
- | Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of // | + | Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of // |
- | Sonnewald S, Priller JP, Schuster J, Glickmann E, Hajirezaei MR, Siebig S, Mudgett MB, Sonnewald U (2012). Regulation of cell wall-bound invertase in pepper leaves by // | + | Sonnewald S, Priller JP, Schuster J, Glickmann E, Hajirezaei MR, Siebig S, Mudgett MB, Sonnewald U (2012). Regulation of cell wall-bound invertase in pepper leaves by // |
- | Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klösgen U, Patschkowski T, Rückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter F, Weber E, Pühler A, Bonas U, Bartels D, Kaiser O (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium // | + | Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klösgen U, Patschkowski T, Rückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter F, Weber E, Pühler A, Bonas U, Bartels D, Kaiser O (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium // |
- | Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from // | + | Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from // |
===== Further reading ===== | ===== Further reading ===== | ||
- | He YQ, Zhang L, Jiang BL, Zhang ZC, Xu RQ, Tang DJ, Qin J, Jiang W, Zhang X, Liao J, Cao JR, Zhang SS, Wei ML, Liang XX, Lu GT, Feng JX, Chen B, Cheng J, Tang JL (2007). Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen // | + | He YQ, Zhang L, Jiang BL, Zhang ZC, Xu RQ, Tang DJ, Qin J, Jiang W, Zhang X, Liao J, Cao JR, Zhang SS, Wei ML, Liang XX, Lu GT, Feng JX, Chen B, Cheng J, Tang JL (2007). Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen // |
===== Acknowledgements ===== | ===== Acknowledgements ===== |