User Tools

Site Tools


bacteria:t3e:xope2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xope2 [2023/05/17 12:05] – [XopE2] rkoebnikbacteria:t3e:xope2 [2025/02/12 23:54] (current) jfpothier
Line 1: Line 1:
-====== XopE2 ======+====== The Type III Effector XopE2 from //Xanthomonas// ======
  
 Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\ Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\
 Internal reviewer: [[https://www.researchgate.net/profile/Eran_Bosis|Eran Bosis]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Eran_Bosis|Eran Bosis]]\\
-Expert reviewer: FIXME+Expert reviewer: [[https://www.researchgate.net/profile/Ralf_Koebnik|Ralf Koebnik]]
  
 Class: XopE\\ Class: XopE\\
Line 26: Line 26:
 === Phenotypes === === Phenotypes ===
  
-  * XopE2 shows an avirulence activity in //Solanum pseudocapsicum//  (Thieme //et al.//, 2007). +  * XopE2 shows an avirulence activity in //Solanum pseudocapsicum// (Thieme //et al.//, 2007). 
-  * //Agrobacterium//  mediated transient expression of XopE2 shows avirulence activity in the ornamental plant //S. pseudocapsicum//  (Lin //et al//., 2011). +  * //Agrobacterium// mediated transient expression of XopE2 shows avirulence activity in the ornamental plant //S. pseudocapsicum// (Lin //et al//., 2011). 
-  * XopE2 proteins were shown to be capable of suppressing the hypersensitive response (HR) of //Nicotiana//  spp. induced by HopPsyA of //P. syringae //pv. //syringae//  61 and the reaction occurs within the plant cells after their delivery by TTSS (Lin //et al//., 2011).+  * XopE2 proteins were shown to be capable of suppressing the hypersensitive response (HR) of //Nicotiana// spp. induced by HopPsyA of //P. syringae// pv. //syringae// 61 and the reaction occurs within the plant cells after their delivery by TTSS (Lin //et al//., 2011).
   * XopE2 inhibits growth of yeast cells in the presence of sodium chloride and caffeine (Salomon //et al//., 2011).   * XopE2 inhibits growth of yeast cells in the presence of sodium chloride and caffeine (Salomon //et al//., 2011).
   * Expression of XopE2 in yeast affects the yeast cell wall and the endoplasmic reticulum stress response (Bosis //et al//., 2011).   * Expression of XopE2 in yeast affects the yeast cell wall and the endoplasmic reticulum stress response (Bosis //et al//., 2011).
-  * XopE2 appears to promote wall-bound invertase activity in pepprt leaves (Sonnewald //et al.//, 2011). +  * XopE2 appears to promote wall-bound invertase activity in pepper leaves (Sonnewald //et al.//, 2011). 
-  * XopE2 mutants grow to equivalent titers as wild type //X. euvesicatoria//  in tomato leaves indicating that is not required for bacterial multiplication in planta. XopE2 together with XopE1 and XopO may function redundantly to inhibit //X//. //euvesicatoria//  induced chlorosis in tomato leaves (Dubrow //et al//., 2018). +  * XopE2 mutants grow to equivalent titers as wild type //X. euvesicatoria// in tomato leaves indicating that is not required for bacterial multiplication in planta. XopE2 together with XopE1 and XopO may function redundantly to inhibit //X//. //euvesicatoria// induced chlorosis in tomato leaves (Dubrow //et al//., 2018). 
-  * XopE2 inhibits the activation of a PTI-inducible promoter by the bacterial peptide elf18 in //Arabidopsis //protoplasts and by flg22 in tomato protoplasts. This effector inhibits flg22-induced callose deposition //in planta //and enhanced disease symptoms caused by attenuated //Pseudomonas syringae//  bacteria (Popov //et al//., 2016).+  * XopE2 inhibits the activation of a PTI-inducible promoter by the bacterial peptide elf18 in //Arabidopsis// protoplasts and by flg22 in tomato protoplasts. This effector inhibits flg22-induced callose deposition //in planta// and enhanced disease symptoms caused by attenuated //Pseudomonas syringae// bacteria (Popov //et al//., 2016). 
 +  * XopE2//<sub>Xcc</sub>// was found to trigger immune responses in //Arabidopsis// via an unidentified activator of the salicylic acid signaling pathway (Huang //et al.//, 2024). 
 +  * Proper subcellular localization of XopE2//<sub>Xcc</sub>// to the plant plasma membrane via its N-myristoylation motif is required to induce expression of defense response-associated genes in //Arabidopsis// (Huang //et al.//, 2024)
  
 === Localization === === Localization ===
  
-XopE2 fused to GFP in a binary vector under control of the Cauliflower mosaic virus 35S promoter expressed in //Nicotiana benthamiana//  leaves, using //Agrobacterium//-mediated gene transfer, allowed to localize XopE2::GFP confined to the periphery of the cells and not detectable in the nucleus or in the cytoplasm. Localization of the XopE2::GFP to the plasma membrane of //N. benthamiana //mesophyll cells could be confirmed by immunocytochemistry (Thieme //et al//., 2007).+XopE2 fused to GFP in a binary vector under control of the Cauliflower mosaic virus 35S promoter expressed in //Nicotiana benthamiana// leaves, using //Agrobacterium//-mediated gene transfer, allowed to localize XopE2::GFP confined to the periphery of the cells and not detectable in the nucleus or in the cytoplasm. Localization of the XopE2::GFP to the plasma membrane of //N. benthamiana// mesophyll cells could be confirmed by immunocytochemistry (Thieme //et al//., 2007). The N-myristoylation motif is essential for the subcellular localization to the plant plasma membrane of XopE2//<sub>Xcc</sub>// (Huang //et al.//, 2024).
  
 === Enzymatic function === === Enzymatic function ===
Line 45: Line 47:
 === Interaction partners === === Interaction partners ===
  
-XopE2 was found to physically interact with tomato 14-3-3 (TFT) proteins. XopE2 is phosphorylated at multiple residues //in planta //for maximal binding to TFT10 (Dubrow //et al//., 2018).+XopE2 was found to physically interact with tomato 14-3-3 (TFT) proteins. XopE2 is phosphorylated at multiple residues //in planta// for maximal binding to TFT10 (Dubrow //et al//., 2018).
  
 ===== Conservation ===== ===== Conservation =====
Line 52: Line 54:
  
 Yes (//e.g.//, //X. citri, X. campestris, X. phaseoli, X. alfalfa, X. euvesicatoria//). Yes (//e.g.//, //X. citri, X. campestris, X. phaseoli, X. alfalfa, X. euvesicatoria//).
 +
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
 Yes (//Pseudomonas//, //Ralstonia//). Yes (//Pseudomonas//, //Ralstonia//).
 +
 ===== References ===== ===== References =====
  
Line 64: Line 68:
  
 Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for //Xv3// disease resistance and interact with a subset of //Xanthomonas euvesicatoria// effectors. Mol. Plant Microbe Interact. 31: 1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]] Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for //Xv3// disease resistance and interact with a subset of //Xanthomonas euvesicatoria// effectors. Mol. Plant Microbe Interact. 31: 1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]]
 +
 +Huang J, Zhou H, Zhou M, Li N, Jiang B, He Y (2024). Functional analysis of type III effectors in //Xanthomonas campestris// pv. //campestris// reveals distinct roles in modulating //Arabidopsis// innate immunity. Pathogens 13: 448. DOI: [[https://doi.org/10.3390/pathogens13060448|10.3390/pathogens13060448]]
  
 Lin RH, Peng CW, Lin YC, Peng HL, Huang HC (2011). The XopE2 effector protein of //Xanthomonas campestris// pv. vesicatoria is involved in virulence and in the suppression of the hypersensitive response. Bot. Stud. 52: 55-72. [[https://www.researchgate.net/publication/286363598_The_XopE2_effector_protein_of_Xanthomonas_campestris_pv_vesicatoria_is_involved_in_virulence_and_in_the_suppression_of_the_hypersensitive_response|Link]] Lin RH, Peng CW, Lin YC, Peng HL, Huang HC (2011). The XopE2 effector protein of //Xanthomonas campestris// pv. vesicatoria is involved in virulence and in the suppression of the hypersensitive response. Bot. Stud. 52: 55-72. [[https://www.researchgate.net/publication/286363598_The_XopE2_effector_protein_of_Xanthomonas_campestris_pv_vesicatoria_is_involved_in_virulence_and_in_the_suppression_of_the_hypersensitive_response|Link]]
Line 82: Line 88:
  
 He YQ, Zhang L, Jiang BL, Zhang ZC, Xu RQ, Tang DJ, Qin J, Jiang W, Zhang X, Liao J, Cao JR, Zhang SS, Wei ML, Liang XX, Lu GT, Feng JX, Chen B, Cheng J, Tang JL (2007). Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen //Xanthomonas campestris// pv. //campestris//. Genome Biol. 8: R218. DOI: [[https://doi.org/10.1186/gb-2007-8-10-r218|10.1186/gb-2007-8-10-r218]] He YQ, Zhang L, Jiang BL, Zhang ZC, Xu RQ, Tang DJ, Qin J, Jiang W, Zhang X, Liao J, Cao JR, Zhang SS, Wei ML, Liang XX, Lu GT, Feng JX, Chen B, Cheng J, Tang JL (2007). Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen //Xanthomonas campestris// pv. //campestris//. Genome Biol. 8: R218. DOI: [[https://doi.org/10.1186/gb-2007-8-10-r218|10.1186/gb-2007-8-10-r218]]
 +
 +===== Acknowledgements =====
 +
 +This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/xope2.1684321544.txt.gz · Last modified: 2023/05/17 12:05 by rkoebnik