User Tools

Site Tools


bacteria:t3e:xope1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xope1 [2020/07/01 11:24] rkoebnikbacteria:t3e:xope1 [2025/01/27 22:43] (current) – [Biological function] jfpothier
Line 1: Line 1:
-====== XopE1 ======+====== The Type III Effector XopE1 from //Xanthomonas// ======
  
-Author: Jaime Cubero\\ +Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\ 
-Internal reviewer: Ralf Koebnik\\ +Internal reviewer: [[https://www.researchgate.net/profile/Ralf_Koebnik|Ralf Koebnik]]
-Expert reviewer: FIXME+
  
 Class: XopE\\ Class: XopE\\
 Family: XopE1\\ Family: XopE1\\
-Prototype: XCV0294 (//Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\ +Prototype: XCV0294 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\ 
-RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ21925.1|CAJ21925.1]] (400 aa)\\+GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ21925.1|CAJ21925.1]] (400 aa)\\ 
 +RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011345998.1|WP_011345998.1]] (400 aa)\\
 Synonym: AvrXacE1 (//Xanthomonas citri// pv. //citri//)\\ Synonym: AvrXacE1 (//Xanthomonas citri// pv. //citri//)\\
-3D structure: Myristoylation motif at their extreme N-terminus (Thieme //et al.//, 2007).+3D structure: Myristoylation motif at the extreme N terminus (Thieme //et al.//, 2007). 
 ===== Biological function ===== ===== Biological function =====
  
Line 22: Line 23:
  
 Using RT-PCR analyses, XopE1 from //X. euvesicatoria// was found to be upregulated by HrpG and HrpX (Thieme //et al//., 2007). The promoter of xopE1<sub>XCV85-10</sub> contains a PIP BOX (Thieme //et al//., 2007). Using RT-PCR analyses, XopE1 from //X. euvesicatoria// was found to be upregulated by HrpG and HrpX (Thieme //et al//., 2007). The promoter of xopE1<sub>XCV85-10</sub> contains a PIP BOX (Thieme //et al//., 2007).
 +
 +Transcriptome analysis (RNA-seq) and qRT-PCR revealed that //avrXacE1// (//xopE1//) gene expression is downregulated in a //X. citri// pv. //citri// Δ//phoP// mutant, indicating that PhoP is a positive regulator of //xopE1// expression (Wei et al., 2019).
 === Phenotypes === === Phenotypes ===
  
-//Agrobacterium//-mediated expression of XopE1 triggers a fast cell-death reaction in non host //Nicotiana// plants revealing that XopE1 is recognized by //Nicotiana//. Its membrane localization delays the detection by the plant surveillance system and contributes to inactivate plant immune responses (Thieme //et al//., 2007). XopE1 was associated to different grades of cytotoxicity and intermediate growth inhibition on yeast and caused phenotypes ranging from chlorosis to cell death when transiently expressed via //Agrobacterium// in either host or non-host plants (Salomon //et al//., 2011; Adlung //et al//., 2016). XopE1 mutants grew to equivalent titers as wild-type //X. euvesicatoria// in tomato leaves indicating that is not required for bacterial multiplication in planta. However, XopE1 was found to be required to suppress chlorosis and tissue collapse at very late stages of //Xanthomonas// infection. XopE1 together with XopE2 and XopO may function redundantly to inhibit //X//. //euvesicatoria//-induced chlorosis in tomato leaves (Dubrow //et al//., 2018).+//Agrobacterium//-mediated expression of XopE1 triggers a fast cell-death reaction in non host //Nicotiana// plants revealing that XopE1 is recognized by //Nicotiana//. Its membrane localization delays the detection by the plant surveillance system and contributes to inactivate plant immune responses (Thieme //et al//., 2007). XopE1 was associated to different grades of cytotoxicity and intermediate growth inhibition on yeast and caused phenotypes ranging from chlorosis to cell death when transiently expressed via //Agrobacterium// in either host or non-host plants (Salomon //et al//., 2011; Adlung //et al//., 2016). XopE1 mutants grew to equivalent titers as wild-type //X. euvesicatoria// in tomato leaves indicating that is not required for bacterial multiplication //in planta//. However, XopE1 was found to be required to suppress chlorosis and tissue collapse at very late stages of //Xanthomonas// infection. XopE1 together with XopE2 and XopO may function redundantly to inhibit //X//. //euvesicatoria//-induced chlorosis in tomato leaves (Dubrow //et al//., 2018).
 === Localization === === Localization ===
  
Line 59: Line 62:
  
 Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from //Xanthomonas campestris// pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol. Plant Microbe Interact. 20: 1250-1261. DOI: [[https://doi.org/10.1094/MPMI-20-10-1250|10.1094/MPMI-20-10-1250]] Thieme F, Szczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from //Xanthomonas campestris// pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol. Plant Microbe Interact. 20: 1250-1261. DOI: [[https://doi.org/10.1094/MPMI-20-10-1250|10.1094/MPMI-20-10-1250]]
 +
 +Wei C, Ding T, Chang C, Yu C, Li X, Liu Q (2019). Global regulator PhoP is necessary for motility, biofilm formation, exoenzyme production and virulence of //Xanthomonas citri// subsp. //citri// on citrus plants. Genes 10: 340. DOI: [[https://doi.org/10.3390/genes10050340|10.3390/genes10050340]]
 +
 +===== Acknowledgements =====
 +
 +This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/xope1.1593599099.txt.gz · Last modified: 2023/01/09 10:20 (external edit)