User Tools

Site Tools


bacteria:t3e:xope1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
bacteria:t3e:xope1 [2020/04/21 21:23] – external edit 127.0.0.1bacteria:t3e:xope1 [2025/01/27 22:43] (current) – [Biological function] jfpothier
Line 1: Line 1:
-====== XopE1 ======+====== The Type III Effector XopE1 from //Xanthomonas// ======
  
-Author: Jaime Cubero\\ +Author: [[https://www.researchgate.net/profile/Jaime_Cubero|Jaime Cubero]]\\ 
-Internal reviewer: FIXME\\ +Internal reviewer: [[https://www.researchgate.net/profile/Ralf_Koebnik|Ralf Koebnik]]
-Expert reviewerFIXME+
  
-Class: XopE1\\ +Class: XopE\\ 
-Family: XopE\\ +Family: XopE1\\ 
-Prototype: XCV0294 (//Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\ +Prototype: XCV0294 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\ 
-RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ21925.1|CAJ21925.1]] (400 aa)\\ +GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ21925.1|CAJ21925.1]] (400 aa)\\ 
-3D structure: Myr motif at their extreme N-terminus.+RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011345998.1|WP_011345998.1]] (400 aa)\\ 
 +Synonym: AvrXacE1 (//Xanthomonas citri// pv. //citri//)\\ 
 +3D structure: Myristoylation motif at the extreme N terminus (Thieme //et al.//, 2007).
  
 ===== Biological function ===== ===== Biological function =====
  
 === How discovered? === === How discovered? ===
-XopE1 was first identified by sequence homology searches (da Silva //et al//., 2002; Thieme //et al//., 2005). 
  
 +XopE1 was first identified by sequence homology searches (da Silva //et al//., 2002; Thieme //et al//., 2005).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
-XopE1 fused to the AvrBs3 reporter, was shown to translocate into plant cells in an //hrpF//-dependent manner (Thieme //et al//., 2007). 
  
 +XopE1 fused to the AvrBs3 reporter was shown to be secreted into culture supernatants in a //hrcV-//dependent manner (Thieme //et al//., 2007). The same fusion constract was translocated into plant cells in a //hrcV//- and //hrpF//-dependent manner (Thieme //et al//., 2007).
 === Regulation === === Regulation ===
-XopE1 from //X. euvesicatoria// was found to be regulated by HrpG and HrpX (Thieme //et al//., 2007), its promoter contains a PIP BOX and it is coregulated with the T3 secretion machinery. 
  
 +Using RT-PCR analyses, XopE1 from //X. euvesicatoria// was found to be upregulated by HrpG and HrpX (Thieme //et al//., 2007). The promoter of xopE1<sub>XCV85-10</sub> contains a PIP BOX (Thieme //et al//., 2007).
 +
 +Transcriptome analysis (RNA-seq) and qRT-PCR revealed that //avrXacE1// (//xopE1//) gene expression is downregulated in a //X. citri// pv. //citri// Δ//phoP// mutant, indicating that PhoP is a positive regulator of //xopE1// expression (Wei et al., 2019).
 === Phenotypes === === Phenotypes ===
-//Agrobacterium//-mediated expression of XopE1 triggers a fast cell-death reaction in non host Nicotiana plants revealing that XopE1 is recognized by Nicotiana. Its membrane localization delays the detection by the plant surveillance system and contribute to inactivate plant immune responses (Thieme //et al//., 2007). XopE1 was associated to different grades of citotoxicity and intermediate growth inhibition on yeast and cause phenotypes ranging from chlorosis to cell death when transiently expressed via //Agrobacterium// spp. in either host or non host plants (Salomon //et al//., 2011; Adlung //et al//., 2016). 
-XopE1 mutants grow to equivalent titers as wild type //X. euvesicatoria// in tomato leaves indicating that is not required for bacterial multiplication in planta. XopE1 however is required to suppress chlorosis and tissue collapse at very late stages of //Xanthomonas// infection. XopE1 together with XopE2 and XopO may function redundantly to inhibit //X//. //euvesicatoria// induced chlorosis in tomato leaves (Dubrow //et al//., 2018). 
  
 +//Agrobacterium//-mediated expression of XopE1 triggers a fast cell-death reaction in non host //Nicotiana// plants revealing that XopE1 is recognized by //Nicotiana//. Its membrane localization delays the detection by the plant surveillance system and contributes to inactivate plant immune responses (Thieme //et al//., 2007). XopE1 was associated to different grades of cytotoxicity and intermediate growth inhibition on yeast and caused phenotypes ranging from chlorosis to cell death when transiently expressed via //Agrobacterium// in either host or non-host plants (Salomon //et al//., 2011; Adlung //et al//., 2016). XopE1 mutants grew to equivalent titers as wild-type //X. euvesicatoria// in tomato leaves indicating that is not required for bacterial multiplication //in planta//. However, XopE1 was found to be required to suppress chlorosis and tissue collapse at very late stages of //Xanthomonas// infection. XopE1 together with XopE2 and XopO may function redundantly to inhibit //X//. //euvesicatoria//-induced chlorosis in tomato leaves (Dubrow //et al//., 2018).
 === Localization === === Localization ===
-XopE1 fused to gfp in a binary vector under control of the Cauliflower mosaic virus 35S promoter expressed in //Nicotiana Benthamiana// leaves, using //Agrobacterium-//mediated gene transfer, allowed to localize XopE1::GFP confined to the periphery of the cells being not detectable in the nucleus or in the cytoplasm. 
  
 +XopE1 fused to GFP reporter in a binary vector under control of the Cauliflower mosaic virus 35S promoter and transiently expressed in //Nicotiana benthamiana// leaves, using //Agrobacterium-//mediated gene transfer, allowed to observe XopE1::GFP to be confined to the periphery of the cells and being not detectable in the nucleus or in the cytoplasm.
 === Enzymatic function === === Enzymatic function ===
-XopE1 belongs to the HopX effector family, which are part of the transglutaminase superfamily (Nichmuk //et al//., 2007). 
  
 +XopE1 belongs to the HopX effector family, members of which belong to the transglutaminase superfamily (Nimchuk //et al//., 2007).
 === Interaction partners === === Interaction partners ===
-XopE1 was found to physically interact with tomato 14-3-3s (TFT) and is also associated to VirK secreted by T2SS and with a possible role in the modulation of plant immune response during the infection process (Assis //et al//., 2017). 
  
 +XopE1 was found to physically interact with tomato 14-3-3s (TFT) (Dubrow //et al.//, 2018). In addition, XopE1 was predicted to interact with VirK, which is secreted by the T2SS and for which a possible role in the modulation of plant immune response during the infection process was suggested (Assis //et al//., 2017).
 ===== Conservation ===== ===== Conservation =====
  
 === In xanthomonads === === In xanthomonads ===
-Yes (//e.g.//, //X. citri, X. campestris, X. phaseoli, X. alfalfa, X. euvesicatoria//).\\ 
  
 +Yes (//e.g.//, //X. alfalfa, X. citri, X. euvesicatoria//, //X. phaseoli//).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
-Yes (//Pseudomonas//, //Ralstonia//). 
  
 +Yes (//Acidovorax// spp., //Pseudomonas// spp., //Ralstonia// //solanacearum//; more distant homologs in rhizobia).
 ===== References ===== ===== References =====
  
-Adlung N, Prochaska H, Thieme S, Banik A, Blüher D, John P, Nagel O, Schulze S, Gantner J, Delker C, Stuttmann J, Bonas U (2016). Non-host resistance induced by the //Xanthomonas// Effector XopQIs Widespread within the Genus Nicotiana and Functionally Depends on EDS1. Front.Plant Sci.7:1796. DOI: [[https://doi.org/10.3389/fpls.2016.01796|10.3389/fpls.2016.01796]].+Adlung N, Prochaska H, Thieme S, Banik A, Blüher D, John P, Nagel O, Schulze S, Gantner J, Delker C, Stuttmann J, Bonas U (2016). Non-host resistance induced by the //Xanthomonas// effector XopQ is widespread within the genus //Nicotiana// and functionally depends on EDS1. Front. Plant Sci. 7: 1796. DOI: [[https://doi.org/10.3389/fpls.2016.01796|10.3389/fpls.2016.01796]] 
 + 
 +Assis RAB, Polloni LC, Patané JSL, Thakur S, Felestrino ÉB, Diaz-Caballero J, Digiampietri LA, Goulart LR, Almeida NF, Nascimento R, Dandekar AM, Zaini PA, Setubal JC, Guttman DS, Moreira LM (2017)Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the //Xanthomonadaceae//. Sci. Rep. 7:16133. DOI: [[https://doi.org/10.1038/s41598-017-16325-1|10.1038/s41598-017-16325-1]] 
 + 
 +da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificities. Nature 417: 459-463. DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]] 
 + 
 +Dubrow Z, Sunitha S, Kim JG, Aakre CD, Girija AM, Sobol G, Teper D, Chen YC, Ozbaki-Yagan N, Vance H, Sessa G, Mudgett MB (2018). Tomato 14-3-3 proteins are required for //Xv3// disease resistance and interact with a subset of //Xanthomonas euvesicatoria// effectors. Mol. Plant Microbe Interact. 31: 1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]]
  
-Assis RABPolloni LCPatané JSLThakur SFelestrino ÉB, Diaz-Caballero J, Digiampietri LA, Goulart LR, Almeida NF, Nascimento R, Dandekar AM, Zaini PA, Setubal JC, Guttman DS, Moreira LM (2017). Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the XanthomonadaceaeSciRep7:16133. DOI: [[https://doi.org/10.1038/s41598-017-16325-1|10.1038/s41598-017-16325-1]].+Nimchuk ZLFisher EJDesvaux DChang JHDangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and a novel N-terminal domain forfunctionMolPlant Microbe Interact20346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]]
  
-da Silva ACFerro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MCCamargo LECamarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira, MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA,Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos SM, Truffi D, Tsai, SM, White FF, Setubal JC, Kitajima JP (2002). Comparison of the genomes of two //Xanthomonas// pathogens with differing host specificitiesNature 417(6887):459–463. DOI: [[https://doi.org/10.1038/417459a|10.1038/417459a]].+Salomon DDar DSreeramulu SSessa G (2011). Expression of //Xanthomonas campestris// pvvesicatoria type III effectors in yeast affects cell growth and viability. Mol Plant Microbe Interact. 24305-314. DOI: [[https://doi.org/0.1094/MPMI-09-10-0196|0.1094/MPMI-09-10-0196]]
  
-Dubrow ZSunitha S, Kim JGAakre CDGirija AMSobol GTeper DChen YCOzbaki-Yagan NVance HSessa GMudgett MB (2018). Tomato 14-3-3 proteins are required for Xv3 disease resistance and interact with a subset of //Xanthomonas euvesicatoria// effectorsMol Plant Microbe Interact31(12):1301-1311. DOI: [[https://doi.org/10.1094/MPMI-02-18-0048-R|10.1094/MPMI-02-18-0048-R]].+Thieme FKoebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner OLanz CLinke BMcHardy ACMeyer FMittenhuber GNies DH, Niesbach-Klösgen UPatschkowski TRückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter F, Weber E, Pühler A, Bonas U, Bartels DKaiser O (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium //Xanthomonas campestris// pvvesicatoria revealed by the complete genome sequenceJ. Bacteriol. 1877254-7266. DOI: [[https://doi.org/10.1128/JB.187.21.7254-7266.2005|10.1128/JB.187.21.7254-7266.2005]]
  
-Nimchuk ZLFisher EJDesvaux DChang JHDangl JL (2007). The HopX (AvrPphE) family of //Pseudomonas syringae// type III effectors require a catalytic triad and novel N-terminal domain forfunction. Mol. Plant-Microbe Interact. 20(4):346-357. DOI: [[https://doi.org/10.1094/MPMI-20-4-0346|10.1094/MPMI-20-4-0346]].+Thieme FSzczesny RUrban AKirchner OHause G, Bonas U (2007). New type III effectors from //Xanthomonas campestris// pv. vesicatoria trigger plant reactions dependent on conserved N-myristoylation motif. Mol. Plant Microbe Interact. 20: 1250-1261. DOI: [[https://doi.org/10.1094/MPMI-20-10-1250|10.1094/MPMI-20-10-1250]]
  
-Salomon DDar DSreeramulu SSessa G (2011). Expression of //Xanthomonas campestris// pvvesicatoria type III effectors in yeast affects cell growth and viabilityMol Plant Microbe In. 24 (3):305–314. DOI: [[https://doi.org/0.1094/MPMI-09-10-0196|0.1094/MPMI-09-10-0196]].+Wei CDing TChang CYu C, Li X, Liu Q (2019). Global regulator PhoP is necessary for motility, biofilm formation, exoenzyme production and virulence of //Xanthomonas citri// subsp//citri// on citrus plantsGenes 10340. DOI: [[https://doi.org/10.3390/genes10050340|10.3390/genes10050340]]
  
-Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F, Mittenhuber G, Nies DH, Niesbach-Klösgen U, Patschkowski T, Rückert C, Rupp O, Schneiker S, Schuster SC, Vorhölter F, Weber E, Pühler A, Bonas U, Bartels D, Kaiser O (2005). Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium //Xanthomonas campestris// pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187 (21) :7254-7266. DOI: [[https://doi.org/10.1128/JB.187.21.7254-7266.2005|10.1128/JB.187.21.7254-7266.2005]].+===== Acknowledgements =====
  
-Thieme FSzczesny R, Urban A, Kirchner O, Hause G, Bonas U (2007). New type III effectors from //Xanthomonas campestris// pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol Plant Microbe In. 20(10):1250–61. DOI: [[https://doi.org/10.1094/MPMI-20-10-1250|10.1094/MPMI-20-10-1250]].+This fact sheet is based upon work from COST Action CA16107 EuroXanthsupported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/xope1.1587500588.txt.gz · Last modified: 2023/01/09 10:20 (external edit)