User Tools

Site Tools


Sidebar

bacteria:t3e:xopbh

This is an old revision of the document!


The Type III Effector XopBH from //Xanthomonas//

Author: Naama Wagner
Internal reviewer: Ralf Koebnik

Class: XopBH
Family: XopB
Prototype: XCV0581 (Xanthomonas euroxanthea, strain 85-10)
GenBank ID: CAJ22212.1 (613 aa)
RefSeq ID: WP_039417318.1 (515 aa)
3D structure: Unknown

Biological function

How discovered?

XopB was discovered in a cDNA-AFLP screen (Noël et al., 2001).

(Experimental) evidence for being a T3E

A chimeric protein consisting of a C-terminally truncated XopB where the last 52 residues (5 kDa) were replaced by the triple c-myc epitope (5 kDa) was secreted into culture supernatants of a strain with a constitutively active form of hrpG in a type III secretion-dependent manner (Noël et al., 2001). XopB belongs to translocation class B (Schulze et al., 2012). Mutation studies of a putative translocation motif (TrM) showed that the proline/arginine-rich motif is required for efficient type III-dependent secretion and translocation of XopB and determines the dependence of XopB transport on the general T3S chaperone HpaB (Prochaska et al., 2018).

Regulation

The xopB gene was shown to be expressed in a hrpG- and hrpX-dependent manner (Noël et al., 2001). Presence of a PIP and ‐10 box (TTCGB‐N15 ‐TTCGB‐N30–32 ‐YANNNT) (Schulze et al., 2012).

Phenotypes

Unknown.

Localization

Unknown.

Enzymatic function

Unknown.

Interaction partners

Unknown.

Conservation

In xanthomonads

Yes (e.g., X. fragariae, X. cynarae pv. gardneri (syn. X. gardneri), X. oryzae, X. vasicola) (Harrison et al., 2014).

In other plant pathogens/symbionts

Yes (e.g., Pseudomonas spp., Ralstonia solanacearum, Acidovorax spp., Pantoea agglomerans) (Schulze et al., 2012).

References

Koebnik R, Krüger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: 10.1128/JB.00795-06

Wagner N, Baumer E, Lyubman I, Shimony Y, Bracha N, Martins L, Potnis N, Chang JH, Teper D, Koebnik R, Pupko T (2025). Effectidor II: A pan-genomic AI-based algorithm for the prediction of type III secretion system effectors. Bioinformatics, in press. DOI: 10.1093/bioinformatics/btaf272

Acknowledgements

This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).

bacteria/t3e/xopbh.1746603822.txt.gz · Last modified: 2025/05/07 08:43 by rkoebnik