User Tools

Site Tools


bacteria:t3e:xopbh

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopbh [2025/05/07 09:26] – [References] rkoebnikbacteria:t3e:xopbh [2025/05/07 09:45] (current) – [References] rkoebnik
Line 15: Line 15:
 === How discovered? === === How discovered? ===
  
-XopBH was discovered by a [[https://effectidor.tau.ac.il|Effectidor II]], a pan-genomic AI-based algorithm for the prediction of type III secretion system effectors (Wagner //et al.//, 2025).+XopBH was discovered by a [[https://effectidor.tau.ac.il|Effectidor II]], a pan-genomic AI-based algorithm for the prediction of type III secretion system effectors (Wagner //et al.//, 2025). The //xopBH// gene of strain CPBF 424 is located near the T3SS gene cluster, next to [[:bacteria:t3e:xopz|xopZ]] and [[:bacteria:t3e:xopf|xopF]], which are all encoded between //hrpE// and //hrpF// (Huguet & Bonas, 1997; Weber //et al.//, 2005).
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-A chimeric protein consisting of a C-terminally truncated XopB where the last 52 residues (5 kDa) were replaced by the triple c-myc epitope (5 kDa) was secreted into culture supernatants of a strain with a constitutively active form of //hrpG// in a type III secretion-dependent manner (Noël //et al.//, 2001). XopB belongs to translocation class B (Schulze //et al.//, 2012). Mutation studies of putative translocation motif (TrM) showed that the proline/arginine-rich motif is required for efficient type III-dependent secretion and translocation of XopB and determines the dependence of XopB transport on the general T3S chaperone HpaB (Prochaska //et al.//, 2018).+XopBH was shown to have functional type III secretion signal using reporter fusion with AvrBs1 (Zhao //et al.//, 2013).
 === Regulation === === Regulation ===
  
Line 42: Line 42:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (//e.g.//, //X. fragariae//, //X. cynarae// pv. //gardneri// (syn. //X. gardneri//), //X. oryzae//, //X. vasicola//) (Harrison //et al.//, 2014).+Yes (//e.g.//, //X. arboricola//, //X. campestris// pv. //papavericola//, //X. hortorum//).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes (//e.g.//, //Pseudomonas// spp., //Ralstonia solanacearum//, //Acidovorax// spp., //Pantoea agglomerans//) (Schulze //et al.//, 2012).+No. 
 ===== References ===== ===== References =====
 +
 +Huguet E, Bonas U (1997). //hrpF// of //Xanthomonas campestris// pv. //vesicatoria// encodes an 87-kDa protein with homology to NoIX of //Rhizobium fredii//. Mo.l Plant Microbe Interact. 10: 488-498. DOI: [[https://doi.org/10.1094/MPMI.1997.10.4.488|10.1094/MPMI.1997.10.4.488]]
  
 Koebnik R, Krüger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the //Xanthomonas campestris// pv. //vesicatoria// AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: [[https://doi.org/10.1128/JB.00795-06|10.1128/JB.00795-06]] Koebnik R, Krüger A, Thieme F, Urban A, Bonas U (2006). Specific binding of the //Xanthomonas campestris// pv. //vesicatoria// AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J. Bacteriol. 188: 7652-7660. DOI: [[https://doi.org/10.1128/JB.00795-06|10.1128/JB.00795-06]]
  
 Wagner N, Baumer E, Lyubman I, Shimony Y, Bracha N, Martins L, Potnis N, Chang JH, Teper D, Koebnik R, Pupko T (2025). Effectidor II: A pan-genomic AI-based algorithm for the prediction of type III secretion system effectors. Bioinformatics, in press. DOI: [[https://doi.org/10.1093/bioinformatics/btaf272|10.1093/bioinformatics/btaf272]] Wagner N, Baumer E, Lyubman I, Shimony Y, Bracha N, Martins L, Potnis N, Chang JH, Teper D, Koebnik R, Pupko T (2025). Effectidor II: A pan-genomic AI-based algorithm for the prediction of type III secretion system effectors. Bioinformatics, in press. DOI: [[https://doi.org/10.1093/bioinformatics/btaf272|10.1093/bioinformatics/btaf272]]
 +
 +Weber E, Ojanen-Reuhs T, Huguet E, Hause G, Romantschuk M, Korhonen TK, Bonas U, Koebnik R (2005). The type III-dependent Hrp pilus is required for productive interaction of //Xanthomonas campestris// pv. //vesicatoria// with pepper host plants. J. Bacteriol. 187: 2458-2468. DOI: [[https://doi.org/10.1128/JB.187.7.2458-2468.2005|10.1128/JB.187.7.2458-2468.2005]]
  
 Wengelnik K, Bonas U (1996). HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of //Xanthomonas campestris// pv. //vesicatoria//. J. Bacteriol. 178: 3462-3469. DOI: [[https://doi.org/10.1128/jb.178.12.3462-3469.1996|10.1128/jb.178.12.3462-3469.1996]] Wengelnik K, Bonas U (1996). HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of //Xanthomonas campestris// pv. //vesicatoria//. J. Bacteriol. 178: 3462-3469. DOI: [[https://doi.org/10.1128/jb.178.12.3462-3469.1996|10.1128/jb.178.12.3462-3469.1996]]
bacteria/t3e/xopbh.1746606368.txt.gz · Last modified: 2025/05/07 09:26 by rkoebnik