User Tools

Site Tools


bacteria:t3e:xopb

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopb [2020/05/14 15:33] jfpothierbacteria:t3e:xopb [2025/01/27 22:29] (current) – [Conservation] jfpothier
Line 1: Line 1:
-====== XopB ======+====== The Type III Effector XopB from //Xanthomonas// ======
  
-Author: Ralf Koebnik\\ +Author: [[https://www.researchgate.net/profile/Ralf_Koebnik|Ralf Koebnik]]\\ 
-ReviewerFIXME \\ +Internal reviewer[[https://www.researchgate.net/profile/Nay_Dia|Nay C. Dia]]
-Expert reviewerFIXME+
  
 Class: XopB\\ Class: XopB\\
 Family: XopB\\ Family: XopB\\
-Prototype: XopB (//Xanthomonas euvesicatoria// pv. //euvesicatoria// aka //Xanthomonas campestris// pv. //vescicatoria//; strain 85-10)\\+Prototype: XCV0581 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\ 
 +GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ22212.1|CAJ22212.1]] (613 aa)\\
 RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_039417318.1|WP_039417318.1]] (515 aa)\\ RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_039417318.1|WP_039417318.1]] (515 aa)\\
 3D structure: Unknown 3D structure: Unknown
Line 27: Line 27:
 === Localization === === Localization ===
  
-XopB localizes to the Golgi apparatus and cytoplasm of the plant cell and interferes with eukaryotic vesicle trafficking (Schulze //et al.//, 2012).+XopB localizes to the Golgi apparatus and cytoplasm of the plant cell and interferes with eukaryotic vesicle trafficking (Schulze //et al.//, 2012). Interestingly, a short ORF is found between the PIP box/-10 promoter region and the predicted translation start codon of //xopB// in Xcv<sub>85-10</sub>, which encodes a 25-aa peptide (MGLCSSKPRVQAQLNIMRPRHRAD) with a strong palmitoylation signal (Koebnik, unpublished). Whether this peptide once belonged to XopB or to another candidate effector, if at all, remains unknown.
 === Enzymatic function === === Enzymatic function ===
  
Line 40: Line 40:
 === In xanthomonads === === In xanthomonads ===
  
-Yes (e.g., //X. fragariae//, //X. gardneri//, //X. oryzae//, //X. vasicola//) (Harrison //et al.//, 2014).+Yes (//e.g.//, //X. fragariae//, //X. cynarae// pv. //gardneri// (syn. //X. gardneri//), //X. oryzae//, //X. vasicola//) (Harrison //et al.//, 2014).
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes (e.g., //Pseudomonas// spp., //Ralstonia solanacearum//, //Acidovorax// spp., //Pantoea agglomerans//) (Schulze //et al.//, 2012).+Yes (//e.g.//, //Pseudomonas// spp., //Ralstonia solanacearum//, //Acidovorax// spp., //Pantoea agglomerans//) (Schulze //et al.//, 2012).
 ===== References ===== ===== References =====
  
-Harrison J, Studholme DJ (2014). Draft genome sequence of //Xanthomonas axonopodis// pathovar //vasculorum// NCPPB 900. FEMS Microbiol. Lett. 360(2): 113-116. DOI: [[https://doi.org/10.1111/1574-6968.12607|10.1111/1574-6968.12607]].+Harrison J, Studholme DJ (2014). Draft genome sequence of //Xanthomonas axonopodis// pathovar //vasculorum// NCPPB 900. FEMS Microbiol. Lett. 360: 113-116. DOI: [[https://doi.org/10.1111/1574-6968.12607|10.1111/1574-6968.12607]]
  
-Noël L, Thieme F, Nennstiel D, Bonas U (2001). cDNA-AFLP analysis unravels a genome-wide //hrpG//-regulon in the plant pathogen //Xanthomonas campestris// pv. //vesicatoria//. Mol. Microbiol. 41(6): 1271-1281. DOI: [[https://doi.org/10.1046/j.1365-2958.2001.02567.x|10.1046/j.1365-2958.2001.02567.x]].+Noël L, Thieme F, Nennstiel D, Bonas U (2001). cDNA-AFLP analysis unravels a genome-wide //hrpG//-regulon in the plant pathogen //Xanthomonas campestris// pv. //vesicatoria//. Mol. Microbiol. 41: 1271-1281. DOI: [[https://doi.org/10.1046/j.1365-2958.2001.02567.x|10.1046/j.1365-2958.2001.02567.x]]
  
-Priller JP, Reid S, Konein P, Dietrich P, Sonnewald S (2016). The //Xanthomonas campestris// pv. //vesicatoria// type-3 effector XopB inhibits plant defence responses by interfering with ROS production. PLoS One 11(7): e0159107. DOI: [[https://doi.org/10.1371/journal.pone.0159107|10.1371/journal.pone.0159107]].+Priller JPR, Reid S, Konein P, Dietrich P, Sonnewald S (2016). The //Xanthomonas campestris// pv. //vesicatoria// type-3 effector XopB inhibits plant defence responses by interfering with ROS production. PLoS One 11: e0159107. DOI: [[https://doi.org/10.1371/journal.pone.0159107|10.1371/journal.pone.0159107]]
  
-Prochaska H, Thieme S, Daum S, Grau J, Schmidtke C, Hallensleben M, John P, Bacia K, Bonas U (2018). A conserved motif promotes HpaB-regulated export of type III effectors from //Xanthomonas//. Mol. Plant Pathol. 19(11): 2473-2487. DOI: [[https://doi.org/10.1111/mpp.12725|10.1111/mpp.12725]].+Prochaska H, Thieme S, Daum S, Grau J, Schmidtke C, Hallensleben M, John P, Bacia K, Bonas U (2018). A conserved motif promotes HpaB-regulated export of type III effectors from //Xanthomonas//. Mol. Plant Pathol. 19: 2473-2487. DOI: [[https://doi.org/10.1111/mpp.12725|10.1111/mpp.12725]]
  
-Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas campestris// pv. //vesicatoria// type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24(3): 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]].+Salomon D, Dar D, Sreeramulu S, Sessa G (2011). Expression of //Xanthomonas campestris// pv. //vesicatoria// type III effectors in yeast affects cell growth and viability. Mol. Plant Microbe Interact. 24: 305-314. DOI: [[https://doi.org/10.1094/MPMI-09-10-0196|10.1094/MPMI-09-10-0196]]
  
-Schulze S, Kay S, Büttner D, Egler M, Eschen-Lippold L, Hause G, Krüger A, Lee J, Müller O, Scheel D, Szczesny R, Thieme F, Bonas U (2012). Analysis of new type III effectors from //Xanthomonas// uncovers XopB and XopS as suppressors of plant immunity. New Phytol. 195(4): 894-911. DOI: [[https://doi.org/10.1111/j.1469-8137.2012.04210.x|10.1111/j.1469-8137.2012.04210.x]].+Schulze S, Kay S, Büttner D, Egler M, Eschen-Lippold L, Hause G, Krüger A, Lee J, Müller O, Scheel D, Szczesny R, Thieme F, Bonas U (2012). Analysis of new type III effectors from //Xanthomonas// uncovers XopB and XopS as suppressors of plant immunity. New Phytol. 195: 894-911. DOI: [[https://doi.org/10.1111/j.1469-8137.2012.04210.x|10.1111/j.1469-8137.2012.04210.x]]
  
-Sonnewald S, Priller JP, Schuster J, Glickmann E, Hajirezaei MR, Siebig S, Mudgett MB, Sonnewald U (2012). Regulation of cell wall-bound invertase in pepper leaves by //Xanthomonas campestris// pv. //vesicatoria// type three effectors. PLoS One 7(12): e51763. DOI: [[https://doi.org/10.1371/journal.pone.0051763|10.1371/journal.pone.0051763]].+Sonnewald S, Priller JPR, Schuster J, Glickmann E, Hajirezaei MR, Siebig S, Mudgett MB, Sonnewald U (2012). Regulation of cell wall-bound invertase in pepper leaves by //Xanthomonas campestris// pv. //vesicatoria// type three effectors. PLoS One 7: e51763. DOI: [[https://doi.org/10.1371/journal.pone.0051763|10.1371/journal.pone.0051763]] 
 + 
 +===== Acknowledgements ===== 
 + 
 +This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/xopb.1589466800.txt.gz · Last modified: 2023/01/09 10:20 (external edit)