User Tools

Site Tools


bacteria:t3e:xopaw

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopaw [2023/01/09 10:20] – external edit 127.0.0.1bacteria:t3e:xopaw [2025/07/04 23:20] (current) jfpothier
Line 1: Line 1:
-====== XopAW ======+====== The Type III Effector XopAW from //Xanthomonas// ======
  
-Author: Yael Helman\\+Author: [[https://orcid.org/0000-0003-0383-2809|Yael Helman]]\\
 Internal reviewer: [[https://www.researchgate.net/profile/Monika_Kaluzna|Monika Kałużna]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Monika_Kaluzna|Monika Kałużna]]\\
-Expert reviewer: [[https://www.researchgate.net/profile/Ralf-Koebnik|Ralf Koebnik]]+Expert reviewer: [[https://www.researchgate.net/profile/Ralf-Koebnik|Ralf Koebnik]]\\
  
 Class: XopAW\\ Class: XopAW\\
 Family: XopAW\\ Family: XopAW\\
 Prototype: XCV3093 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\ Prototype: XCV3093 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 85-10)\\
-RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ24824.1|CAJ24824.1]] (221 aa)\\+GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/CAJ24824.1|CAJ24824.1]] (221 aa)\\ 
 +RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011348129.1|WP_011348129.1]] (221 aa)\\
 3D structure: Unknown 3D structure: Unknown
  
Line 16: Line 17:
  
 XopAW (XCV3093 in //X. euvesicatoria// pv. //euvesicatoria// 85-10; was discovered using a machine-learning approach; Teper //et al//., 2016). XopAW (XCV3093 in //X. euvesicatoria// pv. //euvesicatoria// 85-10; was discovered using a machine-learning approach; Teper //et al//., 2016).
 +
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
 XopAW<sub>Xcv</sub> fused to the AvrBs2 reporter without type 3 secretion signal was shown to trigger a hypersensitive response in ECW20R pepper leaves (carrying the //B////s2// resistance gene) in an //hrpF//-dependent manner (Teper //et al//., 2016). XopAW<sub>Xcv</sub> fused to the AvrBs2 reporter without type 3 secretion signal was shown to trigger a hypersensitive response in ECW20R pepper leaves (carrying the //B////s2// resistance gene) in an //hrpF//-dependent manner (Teper //et al//., 2016).
 +
 === Regulation === === Regulation ===
  
Line 26: Line 29:
  
 A //Xanthomonas euvesicatoria// 85-10 mutant defective in //xopAW// did not exhibit reduced virulence symptoms when inoculated on leaves of susceptible pepper plants, relative to wild-type 85-10 (Teper //et al//., 2016). Additionally, expression in //Arabidopsis// mesophyll protoplasts did not display any significant effect on suppression of the PTI-associated responses induced by the bacterial peptide flg22 (Popov //et al//., 2018). A //Xanthomonas euvesicatoria// 85-10 mutant defective in //xopAW// did not exhibit reduced virulence symptoms when inoculated on leaves of susceptible pepper plants, relative to wild-type 85-10 (Teper //et al//., 2016). Additionally, expression in //Arabidopsis// mesophyll protoplasts did not display any significant effect on suppression of the PTI-associated responses induced by the bacterial peptide flg22 (Popov //et al//., 2018).
 +
 === Localization === === Localization ===
  
Line 33: Line 37:
  
 XopAW contains a canonical EF-hand calcium-binding motif and can potentially interfere with host calcium signaling (Teper //et al//., 2016). XopAW contains a canonical EF-hand calcium-binding motif and can potentially interfere with host calcium signaling (Teper //et al//., 2016).
 +
 === Interaction partners === === Interaction partners ===
  
Line 42: Line 47:
  
 Yes (e.g., //X. arboricola, X. axonopodis, X. citri, X//. //euvesicatoria//, //X. phaseoli//, all above 90% sequence identity; more distant homologs in //X. translucens//, //X. hyacinthi//, //X. bonasiae//, //X. sacchari//). Presence in strains without T3SS (//X. bonasiae//, //X. sacchari//) is atypical for type 3 effectors. Yes (e.g., //X. arboricola, X. axonopodis, X. citri, X//. //euvesicatoria//, //X. phaseoli//, all above 90% sequence identity; more distant homologs in //X. translucens//, //X. hyacinthi//, //X. bonasiae//, //X. sacchari//). Presence in strains without T3SS (//X. bonasiae//, //X. sacchari//) is atypical for type 3 effectors.
 +
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
 Yes (e.g.//, Ralstonia solanacearum, Acidovorax avenae, Pseudomonas syringae, Rhizobium//) (Teper //et al.//, 2016). Yes (e.g.//, Ralstonia solanacearum, Acidovorax avenae, Pseudomonas syringae, Rhizobium//) (Teper //et al.//, 2016).
 +
 ===== References ===== ===== References =====
  
-Popov G, Fraiture M, Brunner F, Sessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]+Popov G, Fraiture M, Brunner F, Sessa G (2016). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]]
  
 Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]] Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]
  
-===== References =====+===== Acknowledgements =====
  
-Popov GFraiture M, Brunner F, Sessa G (2018). Multiple //Xanthomonas euvesicatoria// type III effectors inhibit flg22-triggered immunity. Mol. Plant Microbe Interact. 29: 651-660. DOI: [[https://doi.org/10.1094/MPMI-07-16-0137-R|10.1094/MPMI-07-16-0137-R]] +This fact sheet is based upon work from COST Action CA16107 EuroXanthsupported by COST (European Cooperation in Science and Technology).
- +
-Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine-learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]+
  
bacteria/t3e/xopaw.1673259603.txt.gz · Last modified: 2023/01/09 10:20 by 127.0.0.1