User Tools

Site Tools


bacteria:t3e:xopaq

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopaq [2020/06/22 08:48] – [References] saulburdmanbacteria:t3e:xopaq [2025/02/12 23:41] (current) jfpothier
Line 1: Line 1:
-====== XopAQ ======+====== The Type III Effector XopAQ from //Xanthomonas// ======
  
-Author: Jose Gadea\\ +Author: [[https://www.researchgate.net/profile/Jose_Gadea|Jose Gadea]]\\ 
-Internal reviewer: Saul Burdman Expert reviewer: FIXME+Internal reviewer: [[https://www.researchgate.net/profile/Saul_Burdman|Saul Burdman]]
  
-Class:XopAQ\\ +Class: XopAQ\\ 
-Family:XopAQ\\ +Family: XopAQ\\ 
-Prototype: XopAQ (//X. gardneri// (Xg); strain 101 = ATCC 19865)\\ +Prototype: XGA_2091 (//Xanthomonas hortorum// pv//gardneri//, ex. //Xanthomonas gardneri//; strain 101 = ATCC 19865)\\ 
-GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/|EGD19295.1]] (95 aa)\\+GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/EGD19295.1|EGD19295.1]] (95 aa)\\ 
 +RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_233366621.1|WP_233366621.1]] (93 aa)\\
 3D structure: Unknown 3D structure: Unknown
  
Line 14: Line 15:
 === How discovered? === === How discovered? ===
  
-XopAQ was discovered by sequencing the genome of the //X. gardneri// (Xg) strain 101 (Potnis //et al//., 2011).+XopAQ was predicted to be a type 3 effector based on homology to Rip6/11, a type 3 effector from //Ralstonia solanacearum// (Potnis //et al.//, 2011). 
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
-A functional screen to isolate //Ralstonia solanacearum// genes encoding proteins translocated into plant cells revealed that the genes //rip6 //and //rip11 //encode two new translocated proteins. XopAQ is 60% identical to Rip6 and Rip11. BlastP alignment between XopAQ and Rip6 indicates that the homology is spanned along the whole protein, including the N-terminal part, suggesting that the functional motif that drives translocation in Rip6 is conserved in XopAQ. Translocation assays using a strain deleted in the //hpaB //gene of //Ralstonia// indicates that Rip6 and Rip11 requires HpaB for their effective translocation into plant cells via the Hrp-T3SS (Mukaihara //et al//., 2010). However, to the best of our knowledge, no functional translocation assay has been performed for //Xanthomonas// XopAQ.+A functional screen to isolate //Ralstonia solanacearum// genes encoding proteins translocated into plant cells revealed that the genes //rip6// and //rip11// encode two new translocated proteins. XopAQ is 60% identical to Rip6 and Rip11. BlastP alignment between XopAQ and Rip6 indicates that the homology is spanned along the whole protein, including the N-terminal part, suggesting that the functional motif that drives translocation in Rip6 is conserved in XopAQ. Translocation assays using a strain deleted in the //hpaB// gene of //Ralstonia// indicates that Rip6 and Rip11 requires HpaB for their effective translocation into plant cells via the Hrp-T3SS (Mukaihara //et al//., 2010). However, to the best of our knowledge, no functional translocation assay has been performed for //Xanthomonas// XopAQ. 
 === Regulation === === Regulation ===
  
-XopAQ is up-regulated when //X.citri// pv. //citri// 306 and //X.citri// pv. //citri// Aw12879 (restricted to Mexican lime) were grown in XVM2 (a medium that is known to induce expression of //hrp// genes and several effector genes in //Xanthomonas //sp.), as compared with nutrient broth (NB). However, no differential expression was observed for this gene among these two strains (Jalan //et al//., 2013). In //X. arboricola //the //xopAQ //gene has a putative plant-inducible promoter box (PIP-BOX) sequence67 bp upstream of the TATA box (Garita-Cambronero, 2016b).+The coding sequence of //xopAQ// from //X. gardneri// was found 68 bps downstream of a perfect PIP box (Potnis //et al.//, 2011). Similarly, in //X. arboricola// the //xopAQ// gene has a putative plant-inducible promoter box (PIP-BOX) sequence, 67 bp upstream of the TATA box (Garita-Cambronero, 2016). The //xopAQ X. citri// pv. //citri// 306 and //X. citri// pv. //citri// A<sup>w</sup> 12879 (restricted to Mexican lime) were grown in XVM2 (a medium that is known to induce expression of //hrp// genes and several effector genes in //Xanthomonas// sp.), as compared with nutrient broth (NB). However, no differential expression was observed 
 +for this gene among these two strains (Jalan //et al.//, 2013).
 === Phenotypes === === Phenotypes ===
  
Line 39: Line 43:
 === In xanthomonads === === In xanthomonads ===
  
-Yes. The effector is widely present in the most agressive citrus canker-causing //X.citri// A strains but also in the AW strain (narrow host range) (Escalon //et al//., 2013; Garita-Cambronero //et al//., 2019), and also in the milder //X. fuscans// B strain, but not in the //X. fuscans// C strain, whic is restricted to //C. aurantifoli// (Dalio //et al//., 2017). Present in //Xanthomonas gardneri// but not in some strains of //X. perforans// nor //X. euvesicatoria// strains affecting pepper and tomato (Potnis //et al//., 2011; Schwartz //et al//., 2015; Vancheva //et al//., 2015; Jibrin //et al//., 2018). Two paralogs of XopAQ are present in strains 66b and LMG 918 of //X. euvesicatoria//, but not present in other LMG strains, 83b, 85-10, or //X. euvesicatoria// pv. //rosa// (Barak //et al//., 2016). Present in pathogenic but not in non-pathogenic// X. arboricola// pv. //pruni// (Garita-Cambronero //et al//., 2016a, 2019). Absent in the related //X. juglandis// or //X. corylina// (Garita-Cambronero //et al//., 2018). Also present in //X. citri// pv. //viticola// (Schwartz //et al//., 2015) and other //X. citri// pathovars (blastp analysis). //X. phaseolis// //and X. populi//, among others, posess putative genes encoding proteins with moderate homology to XopAQ based on Blastp analysis.+Yes. The effector is widely present in the most agressive citrus canker-causing //X.citri// A strains but also in the AW strain (narrow host range) (Escalon //et al//., 2013; Garita-Cambronero //et al//., 2019), and also in the milder //X. fuscans// B strain, but not in the //X. fuscans// C strain, whic is restricted to //C. aurantifoli// (Dalio //et al//., 2017). Present in //Xanthomonas gardneri// but not in some strains of //X. perforans// nor //X. euvesicatoria// strains affecting pepper and tomato (Potnis //et al//., 2011; Schwartz //et al//., 2015; Vancheva //et al//., 2015; Jibrin //et al//., 2018). Two paralogs of XopAQ are present in strains 66b and LMG 918 of //X. euvesicatoria//, but not present in other LMG strains, 83b, 85-10, or //X. euvesicatoria// pv. //rosa// (Barak //et al//., 2016). Present in pathogenic but not in non-pathogenic //X. arboricola// pv. //pruni// (Garita-Cambronero //et al//., 2016, 2019). Absent in the related //X. juglandis// or //X. corylina// (Garita-Cambronero //et al//., 2018). Also present in //X. citri// pv. //viticola// (Schwartz //et al//., 2015) and other //X. citri// pathovars (blastp analysis). //X. phaseolis// //and X. populi//, among others, posess putative genes encoding proteins with moderate homology to XopAQ based on Blastp analysis.
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
 Yes (//Ralstonia//). Yes (//Ralstonia//).
- 
 ===== References ===== ===== References =====
  
-Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016). Whole-genome sequences of //Xanthomonas euvesicatoria// strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]].+Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016). Whole-genome sequences of //Xanthomonas euvesicatoria// strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]] 
 + 
 +Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA (2017)PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Ann. Bot. 119: 749-774. DOI: [[https://doi.org/10.1093/aob/mcw238|10.1093/aob/mcw238]] 
 + 
 +Escalon A, Javegny S, Vernière C, Noël LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L (2013). Variations in type III effector repertoires, pathological phenotypes and host range of //Xanthomonas citri// pv. //citri// pathotypes. Mol. Plant. Pathol. 14: 483-96. DOI: [[https://doi.org/10.1111/mpp.12019|10.1111/mpp.12019]]
  
-Dalio RJDMagalhães DMRodrigues CMArena GDOliveira TSSouza-Neto RR, Picchi SCMartins PMMSantos PJCMaximo HJPacheco IS, De Souza AAMachado MA (2017). PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactionsAnnBot119(5)749-774. DOI: [[https://doi.org/10.1093/aob/mcw238|10.1093/aob/mcw238]].+Ferreira MASVBonneau SBriand MCesbron SPortier PDarrasse AGama MASBarbosa MAGMariano RLR, Souza EBJacques MA (2009). //Xanthomonas citri// pv. //viticola// affecting grapevine in Brazil: Emergence of a successful monomorphic pathogen. FrontPlant Sci10489. DOI: [[https://doi.org/10.3389/fpls.2019.00489|10.3389/fpls.2019.00489]]
  
-Escalon A, Javegny S, Vernière C, Noël LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L (2013). Variations in type III effector repertoires, pathological phenotypes and host range of //Xanthomonas citri// pv. //citri// pathotypesMolPlantPathol. 14(5): 483-96. DOI: [[https://doi.org/10.1111/mpp.12019|10.1111/mpp.12019]].+Garita-Cambronero J (2016). Genómica comparativa de cepas de //Xanthomonas arborícola// asociadas a //Prunus ssp//. Caracterización de los procesos de infección de la mancha bacteriana de frutales de hueso y almendroDoctoral Thesis, Universidad Politécnica de Madrid, SpainPDF: [[http://oa.upm.es/45480/|oa.upm.es/45480/]]
  
-Ferreira MASVBonneau S, Briand M, Cesbron S, Portier P, Darrasse A, Gama MAS, Barbosa MAG, Mariano RLR, Souza EB, Jacques MA (2009). //Xanthomonas citri// pv. //viticola// affecting grapevine in Brazil: Emergence of a successful monomorphic pathogenFront. Plant Sci10489. DOI: [[https://doi.org/10.3389/fpls.2019.00489|10.3389/fpls.2019.00489]].+Garita-Cambronero JPalacio-Bielsa A, Cubero J (2018). //Xanthomonas arboricola// pv. //pruni//, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the //X. arboricola// species contextMol. Plant Pathol192053-2065. DOI: [[https://doi.org/10.1111/mpp.12679|10.1111/mpp.12679]]
  
-Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J (2016a). Comparative genomic and phenotypic characterization of pathogenic and non-pathogenic strains of //Xanthomonas arboricola// reveals insights into the infection process of bacterial spot disease of stone fruits. PLoS One 11(8): e0161977. DOI: [[https://doi.org/10.1371/journal.pone.0161977|10.1371/journal.pone.0161977]].+Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J (2016). Comparative genomic and phenotypic characterization of pathogenic and non-pathogenic strains of //Xanthomonas arboricola// reveals insights into the infection process of bacterial spot disease of stone fruits. PLoS One 11: e0161977. DOI: [[https://doi.org/10.1371/journal.pone.0161977|10.1371/journal.pone.0161977]]
  
-Garita-Cambronero J (2016b). Doctoral ThesisGenómica comparativa de cepas de //Xanthomonas arborícola// asociadas a //Prunus ssp//. Caracterización de los procesos de infección de la mancha bacteriana de frutales de hueso y almendroUniversidad Politécnica de Madrid.+Garita-Cambronero J, Sena-Vélez M, Ferragud E, Sabuquillo P, Redondo C, Cubero J (2019). //Xanthomonas citri// subsp//citri// and //Xanthomonas arboricola// pv. //pruni//: Comparative analysis of two pathogens producing similar symptoms in different host plantsPLoS One 14: e0219797. DOI: [[https://doi.org/10.1371/journal.pone.0219797|10.1371/journal.pone.0219797]]
  
-Garita-Cambronero JPalacio-Bielsa ACubero J (2018). //Xanthomonas arboricola// pv. //pruni//, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the //Xarboricola// species context. Mol. Plant Pathol. 19(9)2053-2065. DOI: [[https://doi.org/10.1111/mpp.12679|10.1111/mpp.12679]].+Jalan NKumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JCWang N (2013). Comparative genomic and transcriptome analyses of pathotypes of //Xanthomonas citri// subsp. //citri// provide insights into mechanisms of bacterial virulence and host rangeBMC Genomics 14551. DOI: [[https://doi.org/10.1186/1471-2164-14-551|10.1186/1471-2164-14-551]]
  
-Garita-Cambronero JSena-Vélez MFerragud ESabuquillo PRedondo CCubero J (2019). //Xanthomonas citri// subsp. //citri// and //Xanthomonas arboricola// pv//pruni//: Comparative analysis of two pathogens producing similar symptoms in different host plantsPLoS One 14(7)e0219797. DOI: [[https://doi.org/10.1371/journal.pone.0219797|10.1371/journal.pone.0219797]].+Jibrin MOPotnis N, Timilsina S, Minsavage GVVallad GERoberts PDJones JBGoss EM (2018). Genomic inference of recombination-mediated evolution in //Xanthomonas euvesicatoria// and //X. perforans//. Appl. Environ. Microbiol84e00136-18. DOI: [[https://doi.org/10.1128/AEM.00136-18|10.1128/AEM.00136-18]]
  
-Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013). Comparative genomic and transcriptome analyses of pathotypes of //Xanthomonas citri// subsp//citri// provide insights into mechanisms of bacterial virulence and host rangeBMC Genomics 14551DOI: [[https://doi.org/10.1186/1471-2164-14-551|10.1186/1471-2164-14-551]].+Mukaihara T, Tamura N, Iwabuchi M (2010). Genome-wide identification of a large repertoire of //Ralstonia solanacearum// type III effector proteins by a new functional screenMol. Plant Microbe Interact23251-262. [[https://doi.org/10.1094/MPMI-23-3-0251|10.1094/MPMI-23-3-0251]]
  
-Jibrin MO, Potnis N, Timilsina SMinsavage GVVallad GERoberts PD, Jones JB, Goss EM (2018). Genomic inference of recombination-mediated evolution in //Xanthomonas euvesicatoria// and //Xperforans//. Appl. Environ. Microbiol. 84(13)e00136-18. DOI: [[https://doi.org/10.1128/AEM.00136-18|10.1128/AEM.00136-18]].+Potnis N, Krasileva KChow VAlmeida NFPatil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol M, White FF, Preston JF, Vinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepperBMC Genomics 12146. DOI: [[https://doi.org/10.1186/1471-2164-12-146|10.1186/1471-2164-12-146]]
  
-Mukaihara TTamura N, Iwabuchi M (2010). Genome-wide identification of a large repertoire of //Ralstonia solanacearum// type III effector proteins by a new functional screenMolPlant Microbe Interact23(3)251-62. [[https://doi.org/10.1094/MPMI-23-3-0251|10.1094/MPMI-23-3-0251]].+Schwartz ARPotnis N, Timilsina S, Wilson M, Patané J, Martins J Jr, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JB, Staskawicz BJ (2015). Phylogenomics of //Xanthomonas// field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificityFrontMicrobiol6535DOI: [[https://doi.org/10.3389/fmicb.2015.00535|10.3389/fmicb.2015.00535]]
  
-Potnis NKrasileva KChow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol M, White FF, Preston JFVinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepperBMC Genomics 12146. DOI: [[https://doi.org/10.1186/1471-2164-12-146|10.1186/1471-2164-12-146]].+Vancheva TLefeuvre PBogatzevska NMoncheva P, Koebnik R (2015). Draf genome sequences of two //Xanthomonas euvesicatoria// strains from the Balkan Peninsula. Genome Announc3e01528-14. DOI: [[https://mra.asm.org/content/3/1/e01528-14|10.1128/genomeA.01528-14]]
  
-Schwartz AR, Potnis N, Timilsina S, Wilson M, Patané J, Martins J Jr, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JB, Staskawicz BJ (2015). Phylogenomics of //Xanthomonas// field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front. Microbiol. 6: 535. DOI: [[https://doi.org/10.3389/fmicb.2015.00535|10.3389/fmicb.2015.00535]].+===== Acknowledgements =====
  
-Vancheva TLefeuvre P, Bogatzevska N, Moncheva P, Koebnik R (2015). Draf genome sequences of two //Xanthomonas euvesicatoria// strains from the Balkan Peninsula. Genome Announc. 3(1): e01528-14. DOI: [[https://mra.asm.org/content/3/1/e01528-14|10.1128/genomeA.01528-14]].+This fact sheet is based upon work from COST Action CA16107 EuroXanthsupported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/xopaq.1592812089.txt.gz · Last modified: 2023/01/09 10:20 (external edit)