This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
bacteria:t3e:xopaq [2019/08/28 21:50] – external edit 127.0.0.1 | bacteria:t3e:xopaq [2025/02/12 23:41] (current) – jfpothier | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | Author: Jose Gadea | + | ====== The Type III Effector XopAQ from // |
- | Class: | + | Author: [[https:// |
- | Family: | + | Internal reviewer: [[https:// |
- | Prototype: | + | |
- | GenBank ID: EGD19295.1 (95 aa)\\ | + | Class: XopAQ\\ |
+ | Family: XopAQ\\ | ||
+ | Prototype: | ||
+ | GenBank ID: [[https:// | ||
+ | RefSeq ID: [[https:// | ||
3D structure: Unknown | 3D structure: Unknown | ||
- | **Biological function** | + | ===== Biological function |
+ | |||
+ | === How discovered? === | ||
+ | |||
+ | XopAQ was predicted to be a type 3 effector based on homology to Rip6/11, a type 3 effector from //Ralstonia solanacearum// | ||
+ | |||
+ | === (Experimental) evidence for being a T3E === | ||
+ | |||
+ | A functional screen to isolate //Ralstonia solanacearum// | ||
+ | |||
+ | === Regulation === | ||
+ | |||
+ | The coding sequence of //xopAQ// from //X. gardneri// was found 68 bps downstream of a perfect PIP box (Potnis //et al.//, 2011). Similarly, in //X. arboricola// | ||
+ | for this gene among these two strains (Jalan //et al.//, 2013). | ||
+ | === Phenotypes === | ||
+ | |||
+ | Unknown. | ||
+ | |||
+ | === Localization === | ||
+ | |||
+ | CSS-Palm suite reveals potential myristoylation/ | ||
+ | === Enzymatic function === | ||
+ | |||
+ | Unknown. No known motifs are found in the Rip6 and Rip11 proteins of // | ||
+ | === Interaction partners === | ||
+ | |||
+ | Unknown. | ||
+ | |||
+ | ===== Conservation ===== | ||
+ | |||
+ | === In xanthomonads === | ||
+ | |||
+ | Yes. The effector is widely present in the most agressive citrus canker-causing //X.citri// A strains but also in the AW strain (narrow host range) (Escalon //et al//., 2013; Garita-Cambronero //et al//., 2019), and also in the milder //X. fuscans// B strain, but not in the //X. fuscans// C strain, whic is restricted to //C. aurantifoli// | ||
+ | === In other plant pathogens/ | ||
+ | |||
+ | Yes (// | ||
+ | ===== References ===== | ||
+ | |||
+ | Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016). Whole-genome sequences of // | ||
+ | |||
+ | Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA (2017). PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Ann. Bot. 119: 749-774. DOI: [[https:// | ||
- | //How discovered?// XopAQ was discovered by sequencing the genome of the //X. gardneri (Xg) strain 101 (8).// | + | Escalon A, Javegny S, Vernière C, Noël LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L (2013). Variations in type III effector repertoires, |
- | //(Experimental) evidence for being a T3E:// A functional screen to isolate | + | Ferreira MASV, Bonneau S, Briand M, Cesbron S, Portier P, Darrasse A, Gama MAS, Barbosa MAG, Mariano RLR, Souza EB, Jacques MA (2009). //Xanthomonas citri// pv. //viticola// affecting grapevine in Brazil: Emergence of a successful monomorphic pathogen. Front. Plant Sci. 10: 489. DOI: [[https://doi.org/10.3389/fpls.2019.00489|10.3389/ |
- | // | + | Garita-Cambronero J (2016). Genómica comparativa de cepas de //Xanthomonas arborícola// asociadas a //Prunus ssp//. Caracterización de los procesos de infección de la mancha bacteriana de frutales de hueso y almendro. Doctoral Thesis, Universidad Politécnica de Madrid, Spain. PDF: [[http://oa.upm.es/45480/|oa.upm.es/45480/]] |
- | The //X. arboricola// | + | Garita-Cambronero J, Palacio-Bielsa A, Cubero J (2018). |
- | //Phenotypes:Unknown// | + | Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J (2016). Comparative genomic and phenotypic characterization of pathogenic and non-pathogenic strains of //Xanthomonas arboricola// |
- | //Localization: | + | Garita-Cambronero J, Sena-Vélez M, Ferragud E, Sabuquillo P, Redondo C, Cubero J (2019). |
- | //Enzymatic function:// Unknown. No known motifs are found in the Rip6 and Rip11 proteins | + | Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013). Comparative genomic and transcriptome analyses of pathotypes of //Xanthomonas citri// subsp. //citri// provide insights into mechanisms |
- | //Interaction partners://Unknown | + | Jibrin MO, Potnis N, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, Jones JB, Goss EM (2018). Genomic inference of recombination-mediated evolution in //Xanthomonas euvesicatoria// |
- | **Conservation** | + | Mukaihara T, Tamura N, Iwabuchi M (2010). Genome-wide identification of a large repertoire of //Ralstonia solanacearum// |
- | //In xanthomonads:// | + | Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol M, White FF, Preston JF, Vinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB (2011). Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics 12: 146. DOI: [[https://doi.org/10.1186/1471-2164-12-146|10.1186/1471-2164-12-146]] |
- | //In other plant pathogens/symbionts://Yes (//Ralstonia).// | + | Schwartz AR, Potnis N, Timilsina S, Wilson M, Patané J, Martins J Jr, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JB, Staskawicz BJ (2015). Phylogenomics of //Xanthomonas// field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front. Microbiol. 6: 535. DOI: [[https://doi.org/10.3389/fmicb.2015.00535|10.3389/fmicb.2015.00535]] |
- | **References** | + | Vancheva T, Lefeuvre P, Bogatzevska N, Moncheva P, Koebnik R (2015). Draf genome sequences of two // |
- | - Escalon A, Javegny S, Vernière C, Noël LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L. Variations in type III effector repertoires, | + | ===== Acknowledgements ===== |
- | - Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA. PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Ann Bot. 2017 Mar 1; | + | |
- | - Schwartz AR, Potnis N, Timilsina S, Wilson M, Patané J, Martins J Jr, | + | |
- | - Ferreira MASV, Bonneau S, Briand M, Cesbron S, Portier P, Darrasse A, Gama MAS, Barbosa MAG, Mariano RLR, Souza EB, Jacques MA. Xanthomonas citri pv. viticola Affecting Grapevine in Brazil: Emergence of a Successful Monomorphic Pathogen. Front Plant Sci. 2019 Apr 18;10:489. doi: 10.3389/ | + | |
- | - Garita-Cambronero J, Sena-Vélez M, Ferragud E, Sabuquillo P, Redondo C, Cubero J. Xanthomonas citri subsp. citri and Xanthomonas arboricola pv. pruni: Comparative analysis of two pathogens producing similar symptoms in different host plants. PLoS One. 2019 Jul 18; | + | |
- | - Garita-Cambronero J, Palacio-Bielsa A, Cubero J. Xanthomonas arboricola pv. pruni, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the X. arboricola species context. Mol Plant Pathol. 2018 Sep; | + | |
- | - Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits. PLoS One. 2016 Aug 29; | + | |
- | - Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, Sharlach M, Behlau F, Dow JM, Momol M, White FF, Preston JF, Vinatzer BA, Koebnik R, Setubal JC, Norman DJ, Staskawicz BJ, Jones JB. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics. 2011 Mar 11;12:146. doi: 10.1186/ | + | |
- | - Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC,Wang N. Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range. BMC Genomics. 2013 Aug 14;14:551. doi: 10.1186/ | + | |
- | - Jibrin MO, Potnis N, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, Jones JB, Goss EM. Genomic Inference of Recombination-Mediated Evolution in Xanthomonas euvesicatoria and X. perforans. Appl Environ Microbiol. 2018 Jun 18;84(13). pii: e00136-18. doi: 10.1128/ | + | |
- | - Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R. Whole-Genome Sequences of Xanthomonas euvesicatoria Strains Clarify Taxonomy and Reveal a Stepwise Erosion of Type 3 Effectors. Front Plant Sci. 2016 Dec 9;7:1805. doi: 10.3389/ | + | |
- | - Mukaihara T, Tamura N, Iwabuchi M. Genome-wide identification of a large repertoire of Ralstonia solanacearum type III effector proteins by a new functional screen. Mol Plant Microbe Interact. 2010 Mar; | + | |
- | - Garita-Cambronero J. Doctoral Thesis. Genómica comparativa de cepas de // | + | |
+ | This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology). | ||