User Tools

Site Tools


Sidebar

bacteria:t3e:xopam

This is an old revision of the document!


XopAM

Author: Ralf Koebnik
Internal reviewer:
Expert reviewer:

Class: XopAM
Family: XopAM
Prototype: XopXccR1/XC_3160 (Xanthomonas campestris pv. campestris; strain 8004) (Jiang et al., 2009)
GenBank ID: AAY50204.1 (2031 aa)
RefSeq ID: WP_012438997.1 (2049 aa)
3D structure: Unknown

Biological function

How discovered?

(Experimental) evidence for being a T3E

Regulation

Phenotypes

Mutagenesis of type III effectors in X. campestris pv. campestris (Xcc) confirmed that xopAM functions as a second avirulence gene on plants of the Arabidopsis Col-0 ecotype (Guy et al., 2013).

Deletion of xopAM from Xcc reduced its virulence in cruciferous crops but increased virulence in Arabidopsis (Arabidopsis thaliana) Col-0, indicating that XopAM may perform opposite functions depending on the host species (Xie et al., 2023).

Localization

XopAMXcc is a lipase that may target the cytomembrane (Xie et al., 2023).

Enzymatic function

XopAMXcc is a lipase that may target the cytomembrane and this activity might be enhanced by its membrane-targeted protein XOPAM-ACTIVATED RESISTANCE 1 (AMAR1) in Arabidopsis Col-0 (Xie et al., 2023).

Interaction partners

Binding of XopAMXcc to XOPAM-ACTIVATED RESISTANCE 1 (AMAR1) induced an intense hypersensitive response that restricted Xcc proliferation (Xie et al., 2023).

Conservation

In xanthomonads

In other plant pathogens/symbionts

Yes (e.g., Pseudomonas syringae, Ralstonia solanacearum) (Mukaihara et al., 2004; Kvitko et al., 2009)

References

Guy E, Genissel A, Hajri A, Chabannes M, David P, Carrere S, Lautier M, Roux B, Boureau T, Arlat M, Poussier S, Noël LD (2013). Natural genetic variation of Xanthomonas campestris pv. campestris pathogenicity on Arabidopsis revealed by association and reverse genetics. mBio 4: e00538-12. DOI: 10.1128/mBio.00538-12. Erratum in: MBio (2013) 4: e00978-13.

Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: 10.1094/MPMI-22-11-1401

Kvitko BH, Park DH, Velásquez AC, Wei CF, Russell AB, Martin GB, Schneider DJ, Collmer A (2009). Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog. 5: e1000388. DOI: 10.1371/journal.ppat.1000388

Mukaihara T, Tamura N, Murata Y, Iwabuchi M (2004). Genetic screening of Hrp type III-related pathogenicity genes controlled by the HrpB transcriptional activator in Ralstonia solanacearum. Mol. Microbiol. 54: 863-875. DOI: 10.1111/j.1365-2958.2004.04328.x

Xie Q, Wei B, Zhan Z, He Q, Wu K, Chen Y, Liu S, He C, Niu X, Li C, Tang C, Tao J (2023). Arabidopsis membrane protein AMAR1 interaction with type III effector XopAM triggers a hypersensitive response. Plant Physiol., in press. DOI: 10.1093/plphys/kiad478

bacteria/t3e/xopam.1694679721.txt.gz · Last modified: 2023/09/14 09:22 by rkoebnik