User Tools

Site Tools


bacteria:t3e:xopal1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopal1 [2020/06/26 15:05] – [References] jfpothierbacteria:t3e:xopal1 [2025/08/01 13:02] (current) apasselergue
Line 1: Line 1:
-====== XopAL1 ======+====== The Type III Effector XopAL1 from //Xanthomonas// ======
  
-Author: Matthieu Arlat\\ +Author: (XC_2995)[[https://www.researchgate.net/profile/Matthieu_Arlat|Matthieu Arlat]], (BFP94_RS19935)Anna Passelergue\\ 
-Internal reviewer: FIXME\\ +Internal reviewer: (XC_2995)[[https://www.researchgate.net/profile/Joana_Costa12|Joana Costa]], (BFP94_RS19935)[[https://www.researchgate.net/profile/Ralf_Koebnik|Ralf Koebnik]]
-Expert reviewerFIXME+
  
-Class: XopAL1\\ +Class: XopAL\\ 
-Family: XopAL\\ +Family: XopAL1\\ 
-Prototype: XopAL (//Xanthomonas// campestris pv. //campestris// 8004, gene //XC_2995; xopXccE1//; Jiang //et al//., 2009)\\ +Prototype: XC_2995/XopXccE1 (//Xanthomonas campestris// pv. //campestris//; strain 8004) (Jiang //et al.//, 2009), BFP94_RS19935 (//Xanthomonas translucens// pv. //translucens//; strain DSM 18974)\\ 
-RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/AAY50043.1|AAY50043.1]] (332 aa)\\+GenBank ID: (XC_2995)[[https://www.ncbi.nlm.nih.gov/protein/AAY50043.1|AAY50043.1]] (332 aa)\\ 
 +RefSeq ID: (XC_2995)[[https://www.ncbi.nlm.nih.gov/protein/WP_274360846.1|WP_274360846.1]] (305 aa), (BFP94_RS19935)[[https://www.ncbi.nlm.nih.gov/protein/WP_003478560.1|WP_003478560.1]] (308 aa)\\ 
 +\\
 3D structure: Unknown 3D structure: Unknown
  
Line 14: Line 15:
  
 === How discovered? === === How discovered? ===
-Screen for //Xanthomonas campestris// pv. //campestris// 8004 (Xcc8004) genes with a PIP Box in their promoter and Hrp-dependent translocation (Jiang //et al//., 2009). 
  
-=== (Experimental) evidence for being a T3E ==+XopAL (XC_2995) was first identified in //X. campestris// pv. //campestris// (//Xcc//) strain 8004 as a candidate type III secreted (T3S)-effector due to the presence of a plant-inducible promoter (PIP) box in its gene, XC_2995 (Jiang //et al.//, 2009). 
 + 
 +XopAL1 (BFP94_RS19935) was discovered as an ORF that is encoded downstream of a PIP box and a properly spaced ‐10 promoter motif (TTCGB‐N<sub>15</sub> ‐TTCGB‐N<sub>30–32</sub> ‐YANNNT) (Passelergue, 2025). 
 +=== (Experimental) evidence for being a type III secreted effector (T3E) === 
 Construction of a chimeric protein between the N-terminal region of XC_2995 (XopAL1) and a truncated AvrBS1 protein (AvrBS1<sub>59-445</sub>). The chimeric gene was introduced by conjugation into Xcc8004 ∆AvrBS1 mutant or derivative of this strain mutated in //hrpF// or //hpaB// genes. The transconjugants were tested for HR elicitation on pepper ECW-10R (Jiang //et al//., 2009). These experiments suggest that the N-terminal part of XopAL1 is able to allow the translocation of the chimeric protein into pepper cells in an Hrp-dependent manner. Construction of a chimeric protein between the N-terminal region of XC_2995 (XopAL1) and a truncated AvrBS1 protein (AvrBS1<sub>59-445</sub>). The chimeric gene was introduced by conjugation into Xcc8004 ∆AvrBS1 mutant or derivative of this strain mutated in //hrpF// or //hpaB// genes. The transconjugants were tested for HR elicitation on pepper ECW-10R (Jiang //et al//., 2009). These experiments suggest that the N-terminal part of XopAL1 is able to allow the translocation of the chimeric protein into pepper cells in an Hrp-dependent manner.
  
 +XopAL1 (BFP94_RS19935) was shown to have a functional type III secretion signal using a reporter fusion with AvrBs1 (Zhao //et al.//, 2013).
 === Regulation === === Regulation ===
-The expression of XopAL1 gene was shown to be positively regulated by hrpX (Jiang //et al//., 2009) and hrpG (Jiang //et al//., 2009; Roux //et al//., 2015). Presence of a PIP box (Jiang //et al//., 2009; Bogdanove //et al//., 2013; Roux //et al//., 2015). 
  
 +The expression of //xopAL1// gene was shown to be positively regulated by //hrpX// (Jiang //et al//., 2009) and //hrpG// (Jiang //et al//., 2009; Roux //et al//., 2015). Presence of a PIP box (Jiang //et al//., 2009; Bogdanove //et al//., 2013; Roux //et al//., 2015).
 === Phenotypes === === Phenotypes ===
-XopAL of Xcc8004 is required for full pathogenicity on Chinese radish (//Raphanus sativus// var. //radiculus//) cv. Mashenshong (Jiang //et al//., 2009). 
  
 +XopAL1<sub>Xcc8004</sub> is required for full virulence and growth of //X. campestris// pv. //campestris// in the host plant Chinese radish (Jiang //et al.//, 2009).
 === Localization === === Localization ===
 +
 Unknown. Unknown.
  
 === Enzymatic function === === Enzymatic function ===
 +
 Unknown. Unknown.
  
 === Interaction partners === === Interaction partners ===
 +
 Unknown. Unknown.
  
Line 37: Line 45:
  
 === In xanthomonads === === In xanthomonads ===
-Yes, //X. campestris//, //X. translucens// 
  
 +Yes, //X. campestris//, //X. translucens//, //X. arboricola// (Cesbron //et al//., 2015)
 +
 +But also in //X. graminis// and //X. hortorum//.
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
-//Acidovorax// spp., //Ralstonia solanacearum// (RipE2; Peeters //et al//., 2013), //Erwinia amylovora// (Eop3; Nissinen //et al//., 2007, HopX1<sub>Ea</sub>; Bocsanczy //et al//., 2012), //Pseudomonas// spp. 
  
 +//Acidovorax// spp., //Ralstonia solanacearum// (RipE2; Peeters //et al//., 2013), //Erwinia amylovora// (Eop3; Nissinen //et al//., 2007, HopX1<sub>Ea</sub>; Bocsanczy //et al//., 2012), //Pseudomonas// spp.
 ===== References ===== ===== References =====
  
-Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV(2012). HopX1 in //Erwinia amylovora// functions as an avirulence protein in apple and is regulated by HrpL. J Bacteriol. 194 :553-560. DOI: [[https://doi.org/10.1128/JB.05065-11|10.1128/JB.05065-11]]+Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV (2012). HopX1 in //Erwinia amylovora// functions as an avirulence protein in apple and is regulated by HrpL. JBacteriol. 194: 553-560. DOI: [[https://doi.org/10.1128/JB.05065-11|10.1128/JB.05065-11]] 
 + 
 +Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek B, Vera-Cruz CM, Dorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL (2011). Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic //Xanthomonas// spp. J. Bacteriol. 193: 5450-64. DOI: [[https://doi.org/10.1128/JB.05262-11|10.1128/JB.05262-11]] 
 + 
 +Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, Saux MF, Jacques MA (2015). Comparative genomics of pathogenic and nonpathogenic strains of //Xanthomonas arboricola// unveil molecular and evolutionary events linked to pathoadaptation. Front. Plant Sci. 6:1126. DOI: [[http://doi.org/10.3389/fpls.2015.01126|10.3389/fpls.2015.01126]] 
 + 
 +Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, Cen WJ, Liu J, Ge YY, Li GH, Su LL, Hang XH, Tang DJ, Lu GT, Feng JX, He YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris// pv. //campestris// and five of them contribute individually to full pathogenicity. Mol. Plant Microbe Interact. 22: 1401-1411. DOI: [[https://doi.org/10.1094/MPMI-22-11-1401|10.1094/MPMI-22-11-1401]] 
 + 
 +Nissinen RM, Ytterberg AJ, Bogdanove AJ, VAN Wijk KJ, Beer SV (2007). Analyses of the secretomes of //Erwinia amylovora// and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol. Plant Pathol. 8: 55-67. DOI: [[https://doi.org/10.1111/j.1364-3703.2006.00370.x|10.1111/j.1364-3703.2006.00370.x]] 
 + 
 +Passelergue A (2025). Discovery of eight type III effector genes harboring the PIP box in clade-I xanthomonads. Master's thesis, Université de Montpellier, France.
  
-Bogdanove AJKoebnik R, Lu H, Furutani A, Angiuoli SV, Patil PB, Van Sluys MA, Ryan RP, Meyer DF, Han SW, Aparna G, Rajaram M, Delcher AL, Phillippy AM, Puiu D, Schatz MC, Shumway M, Sommer DD, Trapnell C, Benahmed F, Dimitrov G, Madupu R, Radune D, Sullivan S, Jha G, Ishihara H, Lee SW, Pandey A, Sharma V, Sriariyanun M, Szurek BVera-Cruz CMDorman KS, Ronald PC, Verdier V, Dow JM, Sonti RV, Tsuge S, Brendel VP, Rabinowicz PD, Leach JE, White FF, Salzberg SL.(2011). Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic //Xanthomonas// sppJ Bacteriol. 1935450-64. DOI: [[https://doi.org/10.1128/JB.05262-11|10.1128/JB.05262-11]]+Peeters NCarrère S, Anisimova M, Plener LCazalé ACGenin S (2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the //Ralstonia solanacearum// species complexBMC Genomics 14859. DOI: [[https://doi.org/10.1186/1471-2164-14-859|10.1186/1471-2164-14-859]]
  
-Jiang WJiang BLXu RQHuang JDWei HYJiang GFCen WJLiu JGe YYLi GHSu LLHang XHTang DJLu GTFeng JXHe YQ, Tang JL (2009). Identification of six type III effector genes with the PIP box in //Xanthomonas campestris// pv. //campestris// and five of them contribute individually to full pathogenicityMol Plant Microbe Interact. 22:1401-1411. DOI: [[https://doi.org/|10.1094/MPMI-22-11-1401]]+Roux BBolot SGuy EDenancé NLautier MJardinaud MFFischer-Le Saux MPortier PJacques MAGagnevin LPruvost OLauber EArlat MCarrère SKoebnik RNoël LD (2015). Genomics and transcriptomics of //Xanthomonas campestris// species challenge the concept of core type III effectomeBMC Genomics 16975. DOI: [[https://doi.org/10.1186/s12864-015-2190-0|10.1186/s12864-015-2190-0]]
  
-Nissinen RMYtterberg AJBogdanove AJVAN Wijk KJBeer SV. (2007). Analyses of the secretomes of //Erwinia amylovora// and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levelsMol Plant Pathol8:55-67. DOI: [[https://doi.org/10.1111/j.1364-3703.2006.00370.x|10.1111/j.1364-3703.2006.00370.x]]+Zhao SMo WLWu FTang WTang JL, Szurek B, Verdier V, Koebnik R, Feng JX (2013). Identification of non-TAL effectors in //Xanthomonas oryzae// pv. //oryzae// Chinese strain 13751 and analysis of their role in the bacterial virulence. World J. MicrobiolBiotechnol29733-744. DOI: [[https://doi.org/10.1007/s11274-012-1229-5|10.1007/s11274-012-1229-5]]
  
-Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S. (2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the //Ralstonia solanacearum// species complex. BMC Genomics. 14: 859. DOI: [[https://doi.org/10.1186/1471-2164-14-859|10.1186/1471-2164-14-859]]+===== Acknowledgements =====
  
-Roux BBolot S, Guy E, Denancé N, Lautier M, Jardinaud MF, Fischer-Le Saux M, Portier P, Jacques MA, Gagnevin L, Pruvost O, Lauber E, Arlat M, Carrère S, Koebnik R, Noël LD (2015). Genomics and transcriptomics of //Xanthomonas campestris// species challenge the concept of core type III effectome. BMC Genomics. 16: 975. DOI: [[https://doi.org/10.1186/s12864-015-2190-0|10.1186/s12864-015-2190-0]]+This fact sheet is based upon work from COST Action CA16107 EuroXanthsupported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/xopal1.1593180344.txt.gz · Last modified: 2023/01/09 10:20 (external edit)