User Tools

Site Tools


bacteria:t3e:xopak

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:xopak [2024/05/29 16:09] rkoebnikbacteria:t3e:xopak [2025/02/12 23:32] (current) jfpothier
Line 1: Line 1:
-====== The Type III Effector XopAK ======+====== The Type III Effector XopAK from //Xanthomonas// ======
  
 Author: [[https://www.researchgate.net/profile/Vittoria_Catara|Vittoria Catara]]\\ Author: [[https://www.researchgate.net/profile/Vittoria_Catara|Vittoria Catara]]\\
 Internal reviewer: [[https://www.researchgate.net/profile/Ralf_Koebnik|Ralf Koebnik]]\\ Internal reviewer: [[https://www.researchgate.net/profile/Ralf_Koebnik|Ralf Koebnik]]\\
-Expert reviewer: [[https://sessalab.wixsite.com/site|Guido Sessa]], Haimiao Zhang+Expert reviewer: [[https://sessalab.wixsite.com/site|Guido Sessa]], [[https://www.researchgate.net/profile/Xinhua-Ding|Xinhua Ding]]
  
 Class: XopAK\\ Class: XopAK\\
Line 59: Line 59:
 Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine‐learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]] Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine‐learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]
  
-Zhang HM, Sun BL, Wu W, Li Y, Yin ZY, Lu CC, Zhao HP, Kong LG, Ding XH (2024). The MYB transcription factor OsMYBxoc1 regulates resistance to// Xoc// by directly repressing transcription of the iron transport gene //OsNRAMP5// in rice. Plant Commun. 5: 100859. DOI: [[https://doi.org/10.1016/j.xplc.2024.100859|10.1016/j.xplc.2024.100859]]+Zhang HM, Sun BL, Wu W, Li Y, Yin ZY, Lu CC, Zhao HP, Kong LG, Ding XH (2024). The MYB transcription factor OsMYBxoc1 regulates resistance to //Xoc// by directly repressing transcription of the iron transport gene //OsNRAMP5// in rice. Plant Commun. 5: 100859. DOI: [[https://doi.org/10.1016/j.xplc.2024.100859|10.1016/j.xplc.2024.100859]]
  
-===== Biological function =====+===== Acknowledgements =====
  
-=== How discovered? === +This fact sheet is based upon work from COST Action CA16107 EuroXanthsupported by COST (European Cooperation in Science and Technology).
- +
-XopAK was discovered using a machine-learning approach (Teper //et al//.2016). +
-=== (Experimental) evidence for being a T3E === +
- +
-XopAK, fused to the AvrBs2 reporter, was shown to translocate into plant cells in an //hrpF//-dependent manner (Teper //et al//., 2016). +
-=== Regulation === +
- +
-Unknown. +
- +
-=== Phenotypes === +
- +
-Disease severity, ion leakage, chlorophyll content of pepper plants inoculated with a mutant strain obtained by insertion mutagenesis of //xopAK// and //in planta// bacterial growth were not affected as compared to plants inoculated with the parent strain //X. euvesicatoria// pv. //euvesicatoria// (//Xcv//) 85-10 (Teper //et al//., 2016). +
-=== Localization === +
- +
-Unknown. +
- +
-=== Enzymatic function === +
- +
-XopAK has been predicted to be a deamidase (Teper //et al//., 2016). +
-=== Interaction partners === +
- +
-Unknown. +
- +
-===== Conservation ===== +
- +
-=== In xanthomonads === +
- +
-Yes (//e.g.//, //X. citri, X. euvesicatoria//, //X. oryzae, X. translucens//) (Barak //et al//., 2016; Teper //et al//., 2016) +
-=== In other plant pathogens/symbionts === +
- +
-Yes (//e.g.//, //Pseudomonas syringae// effector HopK1, //Ralstonia solanacearum// (Petnicki-Ocwieja //et al.//, 2002; He //et al.//, 2004; Li //et al//., 2014; Schechter //et al.//, 2004; Teper //et al//., 2016) +
-===== References ===== +
- +
-Barak JD, Vancheva T, Lefeuvre P, Jones JB, Timilsina S, Minsavage GV, Vallad GE, Koebnik R (2016). Whole-genome sequences of //Xanthomonas euvesicatoria// strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front. Plant Sci. 7: 1805. DOI: [[https://doi.org/10.3389/fpls.2016.01805|10.3389/fpls.2016.01805]] +
- +
-He P, Chintamanani S, Chen Z, Zhu L, Kunkel BN, Alfano JR, Tang X, Zhou JM (2004). Activation of a COI1-dependent pathway in //Arabidopsis// by //Pseudomonas syringae// type III effectors and coronatine. Plant J. 37: 589-602. DOI: [[https://doi.org/10.1111/j.1365-313x.2003.01986.x|10.1111/j.1365-313x.2003.01986.x]] +
- +
-Li G, Froehlich JE, Elowsky C, Msanne J, Ostosh AC, Zhang C, Awada T, Alfano JR (2014). Distinct //Pseudomonas// type-III effectors use a cleavable transit peptide to target chloroplasts. Plant J. 77: 310-321. DOI: [[https://doi.org/10.1111/tpj.12396|10.1111/tpj.12396]] +
- +
-Petnicki-Ocwieja T, Schneider DJ, Tam VC, Chancey ST, Shan L, Jamir Y, Schechter LM, Janes MD, Buell CR, Tang X, Collmer A, Alfano JR (2002). Genomewide identification of proteins secreted by the Hrp type III protein secretion system of //Pseudomonas syringae// pv. //tomato// DC3000. Proc. Natl. Acad. Sci. USA 99: 7652-7657. DOI: [[https://doi.org/10.1073/pnas.112183899|10.1073/pnas.112183899]] +
- +
-Schechter LM, Roberts KA, Jamir Y, Alfano JR, Collmer A (2004). //Pseudomonas// syringae type III secretion system targeting signals and novel effectors studied with a Cya translocation reporter. J. Bacteriol. 186: 543-555. DOI: [[https://doi.org/10.1128/jb.186.2.543-555.2004|10.1128/jb.186.2.543-555.2004]] +
- +
-Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel //Xanthomonas euvesicatoria// type III effector proteins by a machine‐learning approach. Mol. Plant Pathol. 17: 398-411. DOI: [[https://doi.org/10.1111/mpp.12288|10.1111/mpp.12288]]+
  
bacteria/t3e/xopak.1716995348.txt.gz · Last modified: 2024/05/29 16:09 by rkoebnik