This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
bacteria:t3e:software [2025/04/24 09:41] – rkoebnik | bacteria:t3e:software [2025/06/05 11:22] (current) – [References] rkoebnik | ||
---|---|---|---|
Line 4: | Line 4: | ||
^Name ^Purpose ^URL ^Reference | | ^Name ^Purpose ^URL ^Reference | | ||
+ | |Effectidor II |T3E prediction |[[https:// | ||
+ | |PLM-T3SE |T3E prediction | |Gao //et al.//, 2025 | | ||
|Effectidor |T3E prediction |[[https:// | |Effectidor |T3E prediction |[[https:// | ||
|Effectidor |T3E prediction |[[https:// | |Effectidor |T3E prediction |[[https:// | ||
Line 55: | Line 57: | ||
Fu X, Yang Y (2019). WEDeepT3: predicting type III secreted effectors based on word embedding and deep learning. Quant. Biol. 7: 293-301. DOI: [[https:// | Fu X, Yang Y (2019). WEDeepT3: predicting type III secreted effectors based on word embedding and deep learning. Quant. Biol. 7: 293-301. DOI: [[https:// | ||
+ | |||
+ | Gao M, Song C, Liu T (2025). PLM-T3SE: Accurate prediction of type III secretion effectors using protein language model embeddings. J. Cell. Biochem. 126: e30642. DOI: [[https:// | ||
Goldberg T, Rost B, Bromberg Y (2016). Computational prediction shines light on type III secretion origins. Sci. Rep. 6: 34516. DOI: [[https:// | Goldberg T, Rost B, Bromberg Y (2016). Computational prediction shines light on type III secretion origins. Sci. Rep. 6: 34516. DOI: [[https:// | ||
Line 101: | Line 105: | ||
Wagner N, Avram O, Gold-Binshtok D, Zerah B, Teper D, Pupko T (2022b). Effectidor: an automated machine-learning based web server for the prediction of type-III secretion system effectors. Bioinformatics 38: 2341-2343. DOI: [[https:// | Wagner N, Avram O, Gold-Binshtok D, Zerah B, Teper D, Pupko T (2022b). Effectidor: an automated machine-learning based web server for the prediction of type-III secretion system effectors. Bioinformatics 38: 2341-2343. DOI: [[https:// | ||
+ | |||
+ | Wagner N, Baumer E, Lyubman I, Shimony Y, Bracha N, Martins L, Potnis N, Chang JH, Teper D, Koebnik R, Pupko T (2025). Effectidor II: A pan-genomic AI-based algorithm for the prediction of type III secretion system effectors. Bioinformatics 41: btaf272. DOI: [[https:// | ||
Wagner S, Diepold A (2020). A unified nomenclature for injectisome-type type III secretion systems. Curr. Top. Microbiol. Immunol. 427: 1-10. doi: [[https:// | Wagner S, Diepold A (2020). A unified nomenclature for injectisome-type type III secretion systems. Curr. Top. Microbiol. Immunol. 427: 1-10. doi: [[https:// |