This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
bacteria:t3e:software [2020/08/17 14:13] – [Further Reading] rkoebnik | bacteria:t3e:software [2023/09/11 17:32] (current) – [References] rkoebnik | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== Software, Databases and Websites ====== | ====== Software, Databases and Websites ====== | ||
+ | |||
+ | Based on discusisons during the International Type III Secretion Meeting in Tübingen (Germany) in April 2016, a unified nomenclature for injectisome-type [[https:// | ||
^Name ^Purpose ^URL ^Reference | | ^Name ^Purpose ^URL ^Reference | | ||
- | | | | | | | + | |Effectidor |T3E prediction |[[https:// |
+ | |Effectidor |T3E prediction |[[https:// | ||
+ | |DeepT3 2.0 |T3E prediction |[[http:// | ||
+ | |DeepT3_4 |T3E prediction |[[https:// | ||
+ | |T3SEpp |T3E prediction |[[http:// | ||
+ | |ACNNT3 |T3E prediction |Source code available at: [[https:// | ||
+ | |EP3 |T3E prediction |[[http:// | ||
|PrediTALE |TAL effector target prediction |[[http:// | |PrediTALE |TAL effector target prediction |[[http:// | ||
- | | | | | | | + | |Phylogenetic profiling |
- | | | | | | | + | |WEDeepT3 |
- | | | | | | | + | |DeepT3 |
- | | | | | | | + | |Bastion3 |
|Machine-learning algorithm |T3E prediction | |Teper //et al.//, 2016 | | |Machine-learning algorithm |T3E prediction | |Teper //et al.//, 2016 | | ||
|AnnoTALE |Annotation and analysis of TAL effector genes |[[http:// | |AnnoTALE |Annotation and analysis of TAL effector genes |[[http:// | ||
|GenSET |T3E prediction | |Hobbs //et al.//, 2016 | | |GenSET |T3E prediction | |Hobbs //et al.//, 2016 | | ||
|pEffect |T3E prediction |[[https:// | |pEffect |T3E prediction |[[https:// | ||
- | |QueTAL |Suite for the functional and phylogenetic comparison of TAL effectors |[[http:// | + | |QueTAL |Suite for the functional and phylogenetic comparison of TAL effectors |[[http:// |
|HMM-LDA |T3E prediction | |Yang & Qi, 2014 | | |HMM-LDA |T3E prediction | |Yang & Qi, 2014 | | ||
- | |Talvez |TAL effector target prediction |[[http:// | + | |Talvez |TAL effector target prediction |[[http:// |
+ | |TALgetter |TAL effector target prediction |[[http:// | ||
|T3SPs |T3E prediction |cic.scu.edu.cn/ | |T3SPs |T3E prediction |cic.scu.edu.cn/ | ||
|cSIEVE |T3E prediction | |Hovis //et al.//, 2013 | | |cSIEVE |T3E prediction | |Hovis //et al.//, 2013 | | ||
|T3_MM |T3E prediction |biocomputer.bio.cuhk.edu.hk/ | |T3_MM |T3E prediction |biocomputer.bio.cuhk.edu.hk/ | ||
- | |BEAN |T3E prediction |systbio.cau.edu.cn/ | + | |BEAN |T3E prediction |[[http://systbio.cau.edu.cn/ |
+ | |RalstoT3Edb |T3E prediction & database |[[http:// | ||
+ | |TALE-NT |TAL effector target prediction |[[https:// | ||
|T3DB |T3E database |biocomputer.bio.cuhk.edu.hk/ | |T3DB |T3E database |biocomputer.bio.cuhk.edu.hk/ | ||
- | |EffectPred |T3E prediction |Source code for download: www.p.chiba-u.ac.jp/ | + | |EffectPred |T3E prediction |Source code available at: [[http:// |
|BPBAac |T3E prediction |biocomputer.bio.cuhk.edu.hk/ | |BPBAac |T3E prediction |biocomputer.bio.cuhk.edu.hk/ | ||
|HMM (EPIYA motif) |T3E prediction | |Xu //et al.//, 2010 | | |HMM (EPIYA motif) |T3E prediction | |Xu //et al.//, 2010 | | ||
- | |T3SEdb |T3E prediction & database |effectors.bic.nus.edu.sg/ | + | |T3SEdb |T3E prediction & database |effectors.bic.nus.edu.sg/ |
|Classifier |T3E prediction |Discriminant functions available upon request |Kampenusa & Zikmanis, 2010 | | |Classifier |T3E prediction |Discriminant functions available upon request |Kampenusa & Zikmanis, 2010 | | ||
|Classifier |T3E prediction |Method and data available upon request |Yang //et al.//, 2010 | | |Classifier |T3E prediction |Method and data available upon request |Yang //et al.//, 2010 | | ||
|modlab |T3E prediction |gecco.org.chemie.uni-frankfurt.de/ | |modlab |T3E prediction |gecco.org.chemie.uni-frankfurt.de/ | ||
- | |EffectiveT3 |T3E prediction |www.effectors.org |Arnold //et al.//, 2009 | | + | |EffectiveT3 |T3E prediction |
- | |SIEVE |T3E prediction |www.sysbep.org/ | + | |SIEVE |T3E prediction |[[http://www.sysbep.org/ |
+ | |// | ||
===== References ===== | ===== References ===== | ||
Line 37: | Line 49: | ||
Dong X, Zhang YJ, Zhang Z. Using weakly conserved motifs hidden in secretion signals to identify type-III effectors from bacterial pathogen genomes. PLoS One. 2013; | Dong X, Zhang YJ, Zhang Z. Using weakly conserved motifs hidden in secretion signals to identify type-III effectors from bacterial pathogen genomes. PLoS One. 2013; | ||
+ | |||
+ | Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ (2012). TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 40: W117-W122. DOI: [[https:// | ||
Erkes A, Mücke S, Reschke M, Boch J, Grau J (2019). PrediTALE: A novel model learned from quantitative data allows for new perspectives on TALE targeting. PLoS Comput. Biol. 15: e1007206. DOI: [[https:// | Erkes A, Mücke S, Reschke M, Boch J, Grau J (2019). PrediTALE: A novel model learned from quantitative data allows for new perspectives on TALE targeting. PLoS Comput. Biol. 15: e1007206. DOI: [[https:// | ||
+ | |||
+ | Fu X, Yang Y (2019). WEDeepT3: predicting type III secreted effectors based on word embedding and deep learning. Quant. Biol. 7: 293-301. DOI: [[https:// | ||
Goldberg T, Rost B, Bromberg Y (2016). Computational prediction shines light on type III secretion origins. Sci. Rep. 6: 34516. DOI: [[https:// | Goldberg T, Rost B, Bromberg Y (2016). Computational prediction shines light on type III secretion origins. Sci. Rep. 6: 34516. DOI: [[https:// | ||
Grau J, Reschke M, Erkes A, Streubel J, Morgan RD, Wilson GG, Koebnik R, Boch J (2016). AnnoTALE: bioinformatics tools for identification, | Grau J, Reschke M, Erkes A, Streubel J, Morgan RD, Wilson GG, Koebnik R, Boch J (2016). AnnoTALE: bioinformatics tools for identification, | ||
+ | |||
+ | Grau J, Wolf A, Reschke M, Bonas U, Posch S, Boch J (2013). Computational predictions provide insights into the biology of TAL effector target sites. PLoS Comput. Biol. 9: e1002962. DOI: [[https:// | ||
Hobbs CK, Porter VL, Stow ML, Siame BA, Tsang HH, Leung KY (2016). Computational approach to predict species-specific type III secretion system (T3SS) effectors using single and multiple genomes. BMC Genomics 17: 1048. DOI: [[https:// | Hobbs CK, Porter VL, Stow ML, Siame BA, Tsang HH, Leung KY (2016). Computational approach to predict species-specific type III secretion system (T3SS) effectors using single and multiple genomes. BMC Genomics 17: 1048. DOI: [[https:// | ||
Hovis KM, Mojica S, McDermott JE, Pedersen L, Simhi C, Rank RG, Myers GS, Ravel J, Hsia RC, Bavoil PM @013). Genus-optimized strategy for the identification of chlamydial type III secretion substrates. Pathog. Dis. 69: 213-222. DOI: [[https:// | Hovis KM, Mojica S, McDermott JE, Pedersen L, Simhi C, Rank RG, Myers GS, Ravel J, Hsia RC, Bavoil PM @013). Genus-optimized strategy for the identification of chlamydial type III secretion substrates. Pathog. Dis. 69: 213-222. DOI: [[https:// | ||
+ | |||
+ | Hui X, Chen Z, Lin M, Zhang J, Hu Y, Zeng Y, Cheng X, Ou-Yang L, Sun MA, White AP, Wang Y (2020). T3SEpp: an integrated prediction pipeline for bacterial type III secreted effectors. mSystems 5: e00288-20. DOI: [[https:// | ||
+ | |||
+ | Jing R, Wen T, Liao C, Xue L, Liu F, Yu L, Luo J (2021). DeepT3 2.0: improving type III secreted effector predictions by an integrative deep learning framework. NAR Genom. Bioinform. 3: lqab086. DOI[[https:// | ||
Kampenusa I, Zikmanis P (2010). Distinguishable codon usage and amino acid composition patterns among substrates of leaderless secretory pathways from proteobacteria. Appl. Microbiol. Biotechnol. 86: 285-293. DOI: [[https:// | Kampenusa I, Zikmanis P (2010). Distinguishable codon usage and amino acid composition patterns among substrates of leaderless secretory pathways from proteobacteria. Appl. Microbiol. Biotechnol. 86: 285-293. DOI: [[https:// | ||
+ | |||
+ | Li J, Li Z, Luo J, Yao Y (2020a). ACNNT3: Attention-CNN framework for prediction of sequence-based bacterial type III secreted effectors. Comput. Math. Methods Med. 2020: 3974598. DOI: [[https:// | ||
+ | |||
+ | Li J, Wei L, Guo F, Zou Q (2020b). EP3: an ensemble predictor that accurately identifies type III secreted effectors. Brief. Bioinform., in press (bbaa008). DOI: [[https:// | ||
+ | |||
+ | Lindeberg M, Stavrinides J, Chang JH, Alfano JR, Collmer A, Dangl JL, Greenberg JT, Mansfield JW, Guttman DS (2005). Proposed guidelines for a unified nomenclature and phylogenetic analysis of type III Hop effector proteins in the plant pathogen // | ||
Löwer M, Schneider G (2009). Prediction of type III secretion signals in genomes of gram-negative bacteria. PLoS One 4: e5917. DOI: [[https:// | Löwer M, Schneider G (2009). Prediction of type III secretion signals in genomes of gram-negative bacteria. PLoS One 4: e5917. DOI: [[https:// | ||
McDermott JE, Corrigan A, Peterson E, Oehmen C, Niemann G, Cambronne ED, Sharp D, Adkins JN, Samudrala R, Heffron F (2011). Computational prediction of type III and IV secreted effectors in gram-negative bacteria. Infect. Immun. 79: 23-32. DOI: [[https:// | McDermott JE, Corrigan A, Peterson E, Oehmen C, Niemann G, Cambronne ED, Sharp D, Adkins JN, Samudrala R, Heffron F (2011). Computational prediction of type III and IV secreted effectors in gram-negative bacteria. Infect. Immun. 79: 23-32. DOI: [[https:// | ||
+ | |||
+ | Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S (2013). Repertoire, unified nomenclature and evolution of the Type III effector gene set in the //Ralstonia solanacearum// | ||
Pérez-Quintero AL, Lamy L, Gordon JL, Escalon A, Cunnac S, Szurek B, Gagnevin L (2015). QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically. Front. Plant Sci. 6: 545. DOI: [[https:// | Pérez-Quintero AL, Lamy L, Gordon JL, Escalon A, Cunnac S, Szurek B, Gagnevin L (2015). QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically. Front. Plant Sci. 6: 545. DOI: [[https:// | ||
Pérez-Quintero AL, Rodriguez-R LM, Dereeper A, López C, Koebnik R, Szurek B, Cunnac S (2013). An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of // | Pérez-Quintero AL, Rodriguez-R LM, Dereeper A, López C, Koebnik R, Szurek B, Cunnac S (2013). An improved method for TAL effectors DNA-binding sites prediction reveals functional convergence in TAL repertoires of // | ||
+ | |||
+ | Sabbagh CRR, Carrere S, Lonjon F, Vailleau F, Macho AP, Genin S, Peeters N (2019). Pangenomic type III effector database of the plant pathogenic // | ||
Samudrala R, Heffron F, McDermott JE (2009). Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog. 5: e1000375. DOI: [[https:// | Samudrala R, Heffron F, McDermott JE (2009). Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog. 5: e1000375. DOI: [[https:// | ||
Line 65: | Line 97: | ||
Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel // | Teper D, Burstein D, Salomon D, Gershovitz M, Pupko T, Sessa G (2016). Identification of novel // | ||
+ | |||
+ | Wagner N, Alburquerque M, Ecker N, Dotan E, Zerah B, Pena MM, Potnis N, Pupko T (2022a). Natural language processing approach to model the secretion signal of type III effectors. Front. Plant Sci. 13: 1024405. DOI: [[https:// | ||
+ | |||
+ | Wagner N, Avram O, Gold-Binshtok D, Zerah B, Teper D, Pupko T (2022b). Effectidor: an automated machine-learning based web server for the prediction of type-III secretion system effectors. Bioinformatics 38: 2341-2343. DOI: [[https:// | ||
+ | |||
+ | Wagner S, Diepold A (2020). A unified nomenclature for injectisome-type type III secretion systems. Curr. Top. Microbiol. Immunol. 427: 1-10. doi: [[https:// | ||
Wang Y, Huang H, Sun M, Zhang Q, Guo D (2012). T3DB: an integrated database for bacterial type III secretion system. BMC Bioinformatics 13: 66. DOI: [[https:// | Wang Y, Huang H, Sun M, Zhang Q, Guo D (2012). T3DB: an integrated database for bacterial type III secretion system. BMC Bioinformatics 13: 66. DOI: [[https:// | ||
+ | |||
+ | Wang J, Li J, Yang B, Xie R, Marquez-Lago TT, Leier A, Hayashida M, Akutsu T, Zhang Y, Chou KC, Selkrig J, Zhou T, Song J, Lithgow T (2019). Bastion3: a two-layer ensemble predictor of type III secreted effectors. Bioinformatics 35: 2017-2028. DOI: [[https:// | ||
Wang Y, Sun M, Bao H, White AP (2013). T3_MM: a Markov model effectively classifies bacterial type III secretion signals. PLoS One 8: e58173. DOI: [[https:// | Wang Y, Sun M, Bao H, White AP (2013). T3_MM: a Markov model effectively classifies bacterial type III secretion signals. PLoS One 8: e58173. DOI: [[https:// | ||
Line 73: | Line 113: | ||
Xu S, Zhang C, Miao Y, Gao J, Xu D (2010). Effector prediction in host-pathogen interaction based on a Markov model of a ubiquitous EPIYA motif. BMC Genomics 11: S1. DOI: [[https:// | Xu S, Zhang C, Miao Y, Gao J, Xu D (2010). Effector prediction in host-pathogen interaction based on a Markov model of a ubiquitous EPIYA motif. BMC Genomics 11: S1. DOI: [[https:// | ||
+ | |||
+ | Xue L, Tang B, Chen W, Luo J (2019). DeepT3: deep convolutional neural networks accurately identify Gram-negative bacterial type III secreted effectors using the N-terminal sequence. Bioinformatics 35: 2051-2057. DOI: [[https:// | ||
Yang X, Guo Y, Luo J, Pu X, Li M (2013). Effective identification of Gram-negative bacterial type III secreted effectors using position-specific residue conservation profiles. PLoS One 8: e84439. DOI: [[https:// | Yang X, Guo Y, Luo J, Pu X, Li M (2013). Effective identification of Gram-negative bacterial type III secreted effectors using position-specific residue conservation profiles. PLoS One 8: e84439. DOI: [[https:// | ||
Line 79: | Line 121: | ||
Yang Y, Zhao J, Morgan RL, Ma W, Jiang T (2010). Computational prediction of type III secreted proteins from gram-negative bacteria. BMC Bioinformatics 11: S47. DOI: [[https:// | Yang Y, Zhao J, Morgan RL, Ma W, Jiang T (2010). Computational prediction of type III secreted proteins from gram-negative bacteria. BMC Bioinformatics 11: S47. DOI: [[https:// | ||
+ | |||
+ | Yu L, Liu F, Li Y, Luo J, Jing R (2021). DeepT3_4: a hybrid deep neural network model for the distinction between bacterial type III and IV secreted effectors. Front. Microbiol. 12: 605782. DOI: [[https:// | ||
+ | |||
+ | Zalguizuri A, Caetano-Anollés G, Lepek VC (2019). Phylogenetic profiling, an untapped resource for the prediction of secreted proteins and its complementation with sequence-based classifiers in bacterial type III, IV and VI secretion systems. Brief. Bioinform. 20: 1395-1402. DOI: [[https:// | ||
===== Further Reading ===== | ===== Further Reading ===== | ||
Noël LD, Denancé N, Szurek B (2013). Predicting promoters targeted by TAL effectors in plant genomes: from dream to reality. Front. Plant Sci. 4: 333. DOI: [[https:// | Noël LD, Denancé N, Szurek B (2013). Predicting promoters targeted by TAL effectors in plant genomes: from dream to reality. Front. Plant Sci. 4: 333. DOI: [[https:// | ||
+ | |||