User Tools

Site Tools


bacteria:t3e:avrbs3

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:avrbs3 [2024/10/24 11:26] – [The Type III Effector AvrBs3 from //Xanthomonas//] rkoebnikbacteria:t3e:avrbs3 [2025/02/21 12:08] (current) joana_costa
Line 16: Line 16:
 === How discovered? === === How discovered? ===
  
-The gene //avrBs3 //was cloned in 1989 and was the first gene described of the TAL effector (TALE) family (Minsavage //et al//., 1990). Different resistant and susceptible cultivars of peppers were inoculated with //Xcv// strains 71-21 and 82-8 (Bonas //et al//., 1989). The pepper cultivar ECW-30R carries the resistance gene //Bs3 //and inoculation of these //Xcv// strains provoked a hypersensitive response (HR) (Bonas //et al//., 1989). This indicated that both //Xcv// strains contained //avrBs3//.+The gene //avrBs3// was cloned in 1989 and was the first gene described of the TAL effector (TALE) family (Minsavage //et al//., 1990). Different resistant and susceptible cultivars of peppers were inoculated with //Xcv// strains 71-21 and 82-8 (Bonas //et al//., 1989). The pepper cultivar ECW-30R carries the resistance gene //Bs3// and inoculation of these //Xcv// strains provoked a hypersensitive response (HR) (Bonas //et al//., 1989). This indicated that both //Xcv// strains contained //avrBs3//.
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
Line 22: Line 22:
 === Regulation === === Regulation ===
  
-Unlike most other type III effectors, expression of //avrBs3// is not dependend on the hrp regulon and the gene does not contain a PIP box in its promoter region. It is expressed constitutively in cells grown in minimal or complex medium and in planta (Knoop //et al//., 1991).+Unlike most other type III effectors, expression of //avrBs3// is not dependend on the hrp regulon and the gene does not contain a PIP box in its promoter region. It is expressed constitutively in cells grown in minimal or complex medium and //in planta// (Knoop //et al//., 1991).
 === Phenotypes === === Phenotypes ===
  
Line 50: Line 50:
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes: Genes homologous to //avrBs3// of //Xanthomonas// were detected in some strains of //Ralstonia solanacearum// biovars 3, 4 and 5 (Heuer //et al//., 2007), in endofungal strains of //Burkholderia rhizoxinica // (Lacker //et al//., 2011), and in unknown marine organisms. All these related proteins can bind DNA (de Lange //et al//., 2013; de Lange //et al.//, 2014; de Lange //et al//., 2015).+Yes: Genes homologous to //avrBs3// of //Xanthomonas// were detected in some strains of //Ralstonia solanacearum// biovars 3, 4 and 5 (Heuer //et al//., 2007), in endofungal strains of //Burkholderia rhizoxinica// (Lacker //et al//., 2011), and in unknown marine organisms. All these related proteins can bind DNA (de Lange //et al//., 2013; de Lange //et al.//, 2014; de Lange //et al//., 2015).
 ===== References ===== ===== References =====
  
Line 63: Line 63:
 de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH, Koszinowski J, Heuer H, Strauß A, Lahaye T (2013). Breaking the DNA-binding code of //Ralstonia solanacearum// TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytol. 199: 773-786. DOI: [[https://doi.org/10.1111/nph.12324|10.1111/nph.12324]] de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH, Koszinowski J, Heuer H, Strauß A, Lahaye T (2013). Breaking the DNA-binding code of //Ralstonia solanacearum// TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytol. 199: 773-786. DOI: [[https://doi.org/10.1111/nph.12324|10.1111/nph.12324]]
  
-de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T (2014). Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nuc. Acids Res. 42: 7436-7449. DOI: [[https://doi.org/10.1093/nar/gku329.|10.1093/nar/gku329.]]+de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T (2014). Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nuc. Acids Res. 42: 7436-7449. DOI: [[https://doi.org/10.1093/nar/gku329|1093/nar/gku329]]
  
 de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T (2015). DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nuc. Acids Res. 43: 10065-10080. DOI: [[https://doi.org/10.1093/nar/gkv1053|10.1093/nar/gkv1053]] de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T (2015). DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nuc. Acids Res. 43: 10065-10080. DOI: [[https://doi.org/10.1093/nar/gkv1053|10.1093/nar/gkv1053]]
Line 87: Line 87:
 Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C (2011). Evolution of an endofungal lifestyle: Deductions from the //Burkholderia rhizoxinica// genome. BMC Genomics 12: 210. DOI: [[https://doi.org/10.1186/1471-2164-12-210|10.1186/1471-2164-12-210]] Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C (2011). Evolution of an endofungal lifestyle: Deductions from the //Burkholderia rhizoxinica// genome. BMC Genomics 12: 210. DOI: [[https://doi.org/10.1186/1471-2164-12-210|10.1186/1471-2164-12-210]]
  
-Liu L, Zhang Y, Liu M, Wei W, Yi C, Peng J (2020. Structural insights into the specific recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL effectors. J. Mol. Biol. 432:1035-1047. doi: [[https://doi.org/10.1016/j.jmb.2019.11.023|10.1016/j.jmb.2019.11.023]]+Liu L, Zhang Y, Liu M, Wei W, Yi C, Peng J (2020). Structural insights into the specific recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL effectors. J. Mol. Biol. 432:1035-1047. doi: [[https://doi.org/10.1016/j.jmb.2019.11.023|10.1016/j.jmb.2019.11.023]]
  
 Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716-719. DOI: [[https://doi.org/10.1126/science.1216211|10.1126/science.1216211]] Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716-719. DOI: [[https://doi.org/10.1126/science.1216211|10.1126/science.1216211]]
Line 107: Line 107:
 Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http://dx.doi.org/10.1107/S0907444913016429|10.1107/S0907444913016429]] Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http://dx.doi.org/10.1107/S0907444913016429|10.1107/S0907444913016429]]
  
-Szurek B, Marois E, Bonas U, Van den Ackerveken G (2001). Eukaryotic features of the //Xanthomonas// type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J. 26: 523-534. DOI: [[https://10.1046/j.0960-7412.2001.01046.x|10.1046/j.0960-7412.2001.01046.x]]+Szurek B, Marois E, Bonas U, Van den Ackerveken G (2001). Eukaryotic features of the //Xanthomonas// type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J. 26: 523-534. DOI: [[https://doi.org/10.1046/j.0960-7412.2001.01046.x|https://doi.org/10.1046/j.0960-7412.2001.01046.x]]
  
 Szurek B, Rossier O, Hause G, Bonas U (2002). Type III-dependent translocation of the //Xanthomonas// AvrBs3 protein into the plant cell. Mol. Microbiol. 46: 13-23. DOI: [[https://doi.org/10.1046/j.1365-2958.2002.03139.x|10.1046/j.1365-2958.2002.03139.x]] Szurek B, Rossier O, Hause G, Bonas U (2002). Type III-dependent translocation of the //Xanthomonas// AvrBs3 protein into the plant cell. Mol. Microbiol. 46: 13-23. DOI: [[https://doi.org/10.1046/j.1365-2958.2002.03139.x|10.1046/j.1365-2958.2002.03139.x]]
Line 113: Line 113:
 Van den Ackerveken G, Marois E, Bonas U (1996). Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307-1316. DOI: [[https://doi.org/10.1016/S0092-8674(00)81825-5|10.1016/S0092-8674(00)81825-5]] Van den Ackerveken G, Marois E, Bonas U (1996). Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307-1316. DOI: [[https://doi.org/10.1016/S0092-8674(00)81825-5|10.1016/S0092-8674(00)81825-5]]
  
-Yin P, Deng D, Yan C, Pan X, Xi JJ, Yan N, Shi Y (2012). Specific DNA-RNA hybrid recognition by TAL effectors. Cell Rep. 2: 707-713. DOI: 1[[https://doi.org/0.1016/j.celrep.2012.09.001|0.1016/j.celrep.2012.09.001]]+Yin P, Deng D, Yan C, Pan X, Xi JJ, Yan N, Shi Y (2012). Specific DNA-RNA hybrid recognition by TAL effectors. Cell Rep. 2: 707-713. DOI: [[https://doi.org/10.1016/j.celrep.2012.09.001|https://doi.org/10.1016/j.celrep.2012.09.001]]
  
 ===== Further reading ===== ===== Further reading =====
bacteria/t3e/avrbs3.1729765589.txt.gz · Last modified: 2024/10/24 11:26 by rkoebnik