User Tools

Site Tools


bacteria:t3e:avrbs3

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bacteria:t3e:avrbs3 [2023/01/09 10:20] – external edit 127.0.0.1bacteria:t3e:avrbs3 [2025/07/04 23:06] (current) jfpothier
Line 1: Line 1:
-====== AvrBs3 ======+====== The Type III Effector AvrBs3 from //Xanthomonas// ======
  
 Author: [[https://www.researchgate.net/profile/Nay_Dia2|Nay C. Dia]]\\ Author: [[https://www.researchgate.net/profile/Nay_Dia2|Nay C. Dia]]\\
 Internal reviewer: [[https://www.genetik.uni-hannover.de/boch.html|Jens Boch]]\\ Internal reviewer: [[https://www.genetik.uni-hannover.de/boch.html|Jens Boch]]\\
-Expert reviewer: [[https://www.researchgate.net/profile/Sabine_Thieme3|Sabine Thieme]]+Expert reviewer: [[https://www.researchgate.net/profile/Sabine_Thieme3|Sabine Thieme]]\\
  
 Class: AvrBs3\\ Class: AvrBs3\\
 Family: Transcription Activator-Like (TAL) Effectors, TALEs (previously: AvrBs3/PthA)\\ Family: Transcription Activator-Like (TAL) Effectors, TALEs (previously: AvrBs3/PthA)\\
 Prototype: AvrBs3 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 71-21)\\ Prototype: AvrBs3 (//Xanthomonas euvesicatoria// pv. //euvesicatoria//, ex //Xanthomonas campestris// pv. //vesicatoria//; strain 71-21)\\
-RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/P14727.2|P14727.2]] (1164 aa)\\ +GenBank ID: [[https://www.ncbi.nlm.nih.gov/protein/P14727.2|P14727.2]] (1164 aa)\\ 
-3D structure: [[https://www.rcsb.org/structure/2KQ5|2KQ5]] (Murakami //et al.//, 2010); [[https://www.rcsb.org/structure/3V6P|3V6P]], [[https://www.rcsb.org/structure/3V6T| 3V6T ]] (Deng //et al.//, 2012a); [[https://www.rcsb.org/structure/4GJP|4GJP]], [[https://www.rcsb.org/structure/4GJR|4GJR]] (Deng //et al.//, 2012b); [[https://www.rcsb.org/structure/4HPZ|4HPZ]] (Gao //et al.//, 2012) ; [[https://www.rcsb.org/structure/3UGM|3UGM]] (Mak //et al.//, 2012); [[https://www.rcsb.org/structure/4GG4|4GG4]] (Yin //et al.//, 2012); [[https://www.rcsb.org/structure/2YPF|2YPF ]] (Stella //et al//., 2013); [[https://www.rcsb.org/structure/4OSH|4OSH]], [[https://www.rcsb.org/structure/4OSI| 4OSI]], [[https://www.rcsb.org/structure/4OSJ| 4OSJ]], [[https://www.rcsb.org/structure/4OSK| 4OSK]], [[https://www.rcsb.org/structure/4OSL| 4OSL]], [[https://www.rcsb.org/structure/4OSM| 4OSM]], [[https://www.rcsb.org/structure/4OSQ|4OSQ]], [[https://www.rcsb.org/structure/4OSR|4OSR]], [[https://www.rcsb.org/structure/4OSS|4OSS]], [[https://www.rcsb.org/structure/4OST| 4OST]], [[https://www.rcsb.org/structure/4OSV| 4OSV]], [[https://www.rcsb.org/structure/4OSW| 4OSW]], [[https://www.rcsb.org/structure/4OSZ| 4OSZ]], [[https://www.rcsb.org/structure/4OT0| 4OT0]], [[https://www.rcsb.org/structure/4OT3| 4OT3]], [[https://www.rcsb.org/structure/4OTO|4OTO]] (Deng //et al.//, 2014); [[https://www.rcsb.org/structure/6JTQ|6JTQ]], [[https://www.rcsb.org/structure/6JVZ|6JVZ]], [[https://www.rcsb.org/structure/6JW0| 6JW0]], [[https://www.rcsb.org/structure/6JW1|6JW1]], [[https://www.rcsb.org/structure/6JW2|6JW2]], [[https://www.rcsb.org/structure/6JW3|6JW3]], [[https://www.rcsb.org/structure/6JW4|6JW4]], [[https://www.rcsb.org/structure/6JW5|6JW5]] (Liu & Yi, unpublished)+RefSeq ID: [[https://www.ncbi.nlm.nih.gov/protein/WP_011052943.1|WP_011052943.1]] (1126 aa)\\ 
 +3D structure: [[https://www.rcsb.org/structure/2KQ5|2KQ5]] (Murakami //et al.//, 2010); [[https://www.rcsb.org/structure/3V6P|3V6P]], [[https://www.rcsb.org/structure/3V6T| 3V6T ]] (Deng //et al.//, 2012a); [[https://www.rcsb.org/structure/4GJP|4GJP]], [[https://www.rcsb.org/structure/4GJR|4GJR]] (Deng //et al.//, 2012b); [[https://www.rcsb.org/structure/4HPZ|4HPZ]] (Gao //et al.//, 2012); [[https://www.rcsb.org/structure/3UGM|3UGM]] (Mak //et al.//, 2012); [[https://www.rcsb.org/structure/4GG4|4GG4]] (Yin //et al.//, 2012); [[https://www.rcsb.org/structure/2YPF|2YPF ]] (Stella //et al//., 2013); [[https://www.rcsb.org/structure/4OSH|4OSH]], [[https://www.rcsb.org/structure/4OSI| 4OSI]], [[https://www.rcsb.org/structure/4OSJ| 4OSJ]], [[https://www.rcsb.org/structure/4OSK| 4OSK]], [[https://www.rcsb.org/structure/4OSL| 4OSL]], [[https://www.rcsb.org/structure/4OSM| 4OSM]], [[https://www.rcsb.org/structure/4OSQ|4OSQ]], [[https://www.rcsb.org/structure/4OSR|4OSR]], [[https://www.rcsb.org/structure/4OSS|4OSS]], [[https://www.rcsb.org/structure/4OST| 4OST]], [[https://www.rcsb.org/structure/4OSV| 4OSV]], [[https://www.rcsb.org/structure/4OSW| 4OSW]], [[https://www.rcsb.org/structure/4OSZ| 4OSZ]], [[https://www.rcsb.org/structure/4OT0| 4OT0]], [[https://www.rcsb.org/structure/4OT3| 4OT3]], [[https://www.rcsb.org/structure/4OTO|4OTO]] (Deng //et al.//, 2014); [[https://www.rcsb.org/structure/6JTQ|6JTQ]], [[https://www.rcsb.org/structure/6JVZ|6JVZ]], [[https://www.rcsb.org/structure/6JW0| 6JW0]], [[https://www.rcsb.org/structure/6JW1|6JW1]], [[https://www.rcsb.org/structure/6JW2|6JW2]], [[https://www.rcsb.org/structure/6JW3|6JW3]], [[https://www.rcsb.org/structure/6JW4|6JW4]], [[https://www.rcsb.org/structure/6JW5|6JW5]] (Liu //et al.//2020); [[https://www.rcsb.org/structure/6LEW|6LEW]] (unpublished)
  
 ===== Biological function ===== ===== Biological function =====
Line 15: Line 16:
 === How discovered? === === How discovered? ===
  
-The gene //avrBs3 //was cloned in 1989 and was the first gene described of the TAL effector (TALE) family (Minsavage //et al//., 1990). Different resistant and susceptible cultivars of peppers were inoculated with //Xcv// strains 71-21 and 82-8 (Bonas //et al//., 1989). The pepper cultivar ECW-30R carries the resistance gene //Bs3 //and inoculation of these //Xcv// strains provoked a hypersensitive response (HR) (Bonas //et al//., 1989). This indicated that both //Xcv// strains contained //avrBs3//.+The gene //avrBs3// was cloned in 1989 and was the first gene described of the TAL effector (TALE) family (Minsavage //et al//., 1990). Different resistant and susceptible cultivars of peppers were inoculated with //Xcv// strains 71-21 and 82-8 (Bonas //et al//., 1989). The pepper cultivar ECW-30R carries the resistance gene //Bs3// and inoculation of these //Xcv// strains provoked a hypersensitive response (HR) (Bonas //et al//., 1989). This indicated that both //Xcv// strains contained //avrBs3//. 
 === (Experimental) evidence for being a T3E === === (Experimental) evidence for being a T3E ===
  
 AvrBs3 is secreted and translocated into the plant via the Hrp type III secretion system (Bonas //et al//., 1991; Van den Ackerveken //et al//., 1996; Bonas //et al//., 1999). In contrast to wild-type bacteria, an //Xcv// mutant carrying a deletion in the conserved //hrp// gene //hrcV// did not secrete AvrBs3 indicating that AvrBs3 is transported by the Hrp system (Rossier //et al//., 1999). The first 10 and 50 amino acids of AvrBs3 are required for secretion and translocation, respectively (Scheibner //et al//., 2017). In its C-terminal domain, AvrBs3 carries an acidic activation domain which is functional in plant cells (Van den Ackerveken //et al//., 1996). Two nuclear localization signals in the C-terminal domain of AvrBs3 facilitate transport into the plant cell nucleus (Van den Ackerveken //et al//., 1996; Szurek //et al//., 2002). These eukaryotic features support the role of AvrBs3 and members of the TALE family within the eukaryotic host cell. AvrBs3 is secreted and translocated into the plant via the Hrp type III secretion system (Bonas //et al//., 1991; Van den Ackerveken //et al//., 1996; Bonas //et al//., 1999). In contrast to wild-type bacteria, an //Xcv// mutant carrying a deletion in the conserved //hrp// gene //hrcV// did not secrete AvrBs3 indicating that AvrBs3 is transported by the Hrp system (Rossier //et al//., 1999). The first 10 and 50 amino acids of AvrBs3 are required for secretion and translocation, respectively (Scheibner //et al//., 2017). In its C-terminal domain, AvrBs3 carries an acidic activation domain which is functional in plant cells (Van den Ackerveken //et al//., 1996). Two nuclear localization signals in the C-terminal domain of AvrBs3 facilitate transport into the plant cell nucleus (Van den Ackerveken //et al//., 1996; Szurek //et al//., 2002). These eukaryotic features support the role of AvrBs3 and members of the TALE family within the eukaryotic host cell.
 +
 === Regulation === === Regulation ===
  
-Unlike most other type III effectors, expression of //avrBs3// is not dependend on the hrp regulon and the gene does not contain a PIP box in its promoter region. It is expressed constitutively in cells grown in minimal or complex medium and in planta (Knoop //et al//., 1991).+Unlike most other type III effectors, expression of //avrBs3// is not dependend on the hrp regulon and the gene does not contain a PIP box in its promoter region. It is expressed constitutively in cells grown in minimal or complex medium and //in planta// (Knoop //et al//., 1991). 
 === Phenotypes === === Phenotypes ===
  
Line 31: Line 35:
  
 The central region of the //avrBs3// gene consists of 17.5 nearly identical 102 bp repeats. Each repeat encodes 34 amino acids (Bonas //et al//., 1989). Repeat variable di-residues (RVDs) at positions 12 and 13 determine the specificity of each repeat (Boch //et al//., 2009; Moscou & Bogdanove, 2009). Rearranging individual repeats enables construction of any desired DNA-binding specificity (Boch //et al.//, 2009). The central region of the //avrBs3// gene consists of 17.5 nearly identical 102 bp repeats. Each repeat encodes 34 amino acids (Bonas //et al//., 1989). Repeat variable di-residues (RVDs) at positions 12 and 13 determine the specificity of each repeat (Boch //et al//., 2009; Moscou & Bogdanove, 2009). Rearranging individual repeats enables construction of any desired DNA-binding specificity (Boch //et al.//, 2009).
 +
 === Localization === === Localization ===
  
 The //avrBs3// gene is localized on pXV11, a self-transmissible plasmid, and was initially isolated from //Xcv// strain 71-21 (Bonas //et al//., 1989). Using complementation of //Xcv// strain 85-10 (virulent on pepper ECW-30R), a 5-kb fragment including //avrBs3// was discovered (Bonas //et al//., 1989). The //avrBs3// gene is localized on pXV11, a self-transmissible plasmid, and was initially isolated from //Xcv// strain 71-21 (Bonas //et al//., 1989). Using complementation of //Xcv// strain 85-10 (virulent on pepper ECW-30R), a 5-kb fragment including //avrBs3// was discovered (Bonas //et al//., 1989).
 +
 === Molecular function === === Molecular function ===
  
Line 41: Line 47:
  
 Importin alpha (Szurek //et al.//, 2001) interacts with the nuclear localization sequences of AvrBs3. The basal transcription factor IIA, gamma subunit from rice interacts with a region in the C-terminal domain of TALEs (Yuan //et al//., 2016) and similar interactions might be possible for AvrBs3, too. AvrBs3 and the TALE-family of effectors bind to DNA (Kay //et al//., 2007; Römer //et al//., 2007) with their N-terminal domain exhibiting general DNA-binding properties (Gao //et al.//, 2012) and the repeat region facilitating specific interaction to DNA bases (Boch //et al//., 2009; Moscou & Bogdanove, 2009). Importin alpha (Szurek //et al.//, 2001) interacts with the nuclear localization sequences of AvrBs3. The basal transcription factor IIA, gamma subunit from rice interacts with a region in the C-terminal domain of TALEs (Yuan //et al//., 2016) and similar interactions might be possible for AvrBs3, too. AvrBs3 and the TALE-family of effectors bind to DNA (Kay //et al//., 2007; Römer //et al//., 2007) with their N-terminal domain exhibiting general DNA-binding properties (Gao //et al.//, 2012) and the repeat region facilitating specific interaction to DNA bases (Boch //et al//., 2009; Moscou & Bogdanove, 2009).
 +
 ===== Conservation ===== ===== Conservation =====
  
Line 49: Line 56:
 === In other plant pathogens/symbionts === === In other plant pathogens/symbionts ===
  
-Yes: Genes homologous to //avrBs3// of //Xanthomonas// were detected in some strains of //Ralstonia solanacearum// biovars 3, 4 and 5 (Heuer //et al//., 2007), in endofungal strains of //Burkholderia rhizoxinica // (Lacker //et al//., 2011), and in unknown marine organisms. All these related proteins can bind DNA (de Lange //et al//., 2013; de Lange //et al.//, 2014; de Lange //et al//., 2015).+Yes: Genes homologous to //avrBs3// of //Xanthomonas// were detected in some strains of //Ralstonia solanacearum// biovars 3, 4 and 5 (Heuer //et al//., 2007), in endofungal strains of //Burkholderia rhizoxinica// (Lacker //et al//., 2011), and in unknown marine organisms. All these related proteins can bind DNA (de Lange //et al//., 2013; de Lange //et al.//, 2014; de Lange //et al//., 2015). 
 ===== References ===== ===== References =====
  
Line 62: Line 70:
 de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH, Koszinowski J, Heuer H, Strauß A, Lahaye T (2013). Breaking the DNA-binding code of //Ralstonia solanacearum// TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytol. 199: 773-786. DOI: [[https://doi.org/10.1111/nph.12324|10.1111/nph.12324]] de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH, Koszinowski J, Heuer H, Strauß A, Lahaye T (2013). Breaking the DNA-binding code of //Ralstonia solanacearum// TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytol. 199: 773-786. DOI: [[https://doi.org/10.1111/nph.12324|10.1111/nph.12324]]
  
-de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T (2014). Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nuc. Acids Res. 42: 7436-7449. DOI: [[https://doi.org/10.1093/nar/gku329.|10.1093/nar/gku329.]]+de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T (2014). Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nuc. Acids Res. 42: 7436-7449. DOI: [[https://doi.org/10.1093/nar/gku329|1093/nar/gku329]]
  
 de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T (2015). DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nuc. Acids Res. 43: 10065-10080. DOI: [[https://doi.org/10.1093/nar/gkv1053|10.1093/nar/gkv1053]] de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T (2015). DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nuc. Acids Res. 43: 10065-10080. DOI: [[https://doi.org/10.1093/nar/gkv1053|10.1093/nar/gkv1053]]
Line 85: Line 93:
  
 Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C (2011). Evolution of an endofungal lifestyle: Deductions from the //Burkholderia rhizoxinica// genome. BMC Genomics 12: 210. DOI: [[https://doi.org/10.1186/1471-2164-12-210|10.1186/1471-2164-12-210]] Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C (2011). Evolution of an endofungal lifestyle: Deductions from the //Burkholderia rhizoxinica// genome. BMC Genomics 12: 210. DOI: [[https://doi.org/10.1186/1471-2164-12-210|10.1186/1471-2164-12-210]]
 +
 +Liu L, Zhang Y, Liu M, Wei W, Yi C, Peng J (2020). Structural insights into the specific recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL effectors. J. Mol. Biol. 432:1035-1047. DOI: [[https://doi.org/10.1016/j.jmb.2019.11.023|10.1016/j.jmb.2019.11.023]]
  
 Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716-719. DOI: [[https://doi.org/10.1126/science.1216211|10.1126/science.1216211]] Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716-719. DOI: [[https://doi.org/10.1126/science.1216211|10.1126/science.1216211]]
Line 104: Line 114:
 Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http://dx.doi.org/10.1107/S0907444913016429|10.1107/S0907444913016429]] Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http://dx.doi.org/10.1107/S0907444913016429|10.1107/S0907444913016429]]
  
-Szurek B, Marois E, Bonas U, Van den Ackerveken G (2001). Eukaryotic features of the //Xanthomonas// type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J. 26: 523-534. DOI: [[https://10.1046/j.0960-7412.2001.01046.x|10.1046/j.0960-7412.2001.01046.x]]+Szurek B, Marois E, Bonas U, Van den Ackerveken G (2001). Eukaryotic features of the //Xanthomonas// type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J. 26: 523-534. DOI: [[https://doi.org/10.1046/j.0960-7412.2001.01046.x|https://doi.org/10.1046/j.0960-7412.2001.01046.x]]
  
 Szurek B, Rossier O, Hause G, Bonas U (2002). Type III-dependent translocation of the //Xanthomonas// AvrBs3 protein into the plant cell. Mol. Microbiol. 46: 13-23. DOI: [[https://doi.org/10.1046/j.1365-2958.2002.03139.x|10.1046/j.1365-2958.2002.03139.x]] Szurek B, Rossier O, Hause G, Bonas U (2002). Type III-dependent translocation of the //Xanthomonas// AvrBs3 protein into the plant cell. Mol. Microbiol. 46: 13-23. DOI: [[https://doi.org/10.1046/j.1365-2958.2002.03139.x|10.1046/j.1365-2958.2002.03139.x]]
Line 110: Line 120:
 Van den Ackerveken G, Marois E, Bonas U (1996). Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307-1316. DOI: [[https://doi.org/10.1016/S0092-8674(00)81825-5|10.1016/S0092-8674(00)81825-5]] Van den Ackerveken G, Marois E, Bonas U (1996). Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307-1316. DOI: [[https://doi.org/10.1016/S0092-8674(00)81825-5|10.1016/S0092-8674(00)81825-5]]
  
-Yin P, Deng D, Yan C, Pan X, Xi JJ, Yan N, Shi Y (2012). Specific DNA-RNA hybrid recognition by TAL effectors. Cell Rep. 2: 707-713. DOI: 1[[https://doi.org/0.1016/j.celrep.2012.09.001|0.1016/j.celrep.2012.09.001]]+Yin P, Deng D, Yan C, Pan X, Xi JJ, Yan N, Shi Y (2012). Specific DNA-RNA hybrid recognition by TAL effectors. Cell Rep. 2: 707-713. DOI: [[https://doi.org/10.1016/j.celrep.2012.09.001|https://doi.org/10.1016/j.celrep.2012.09.001]]
  
 ===== Further reading ===== ===== Further reading =====
Line 125: Line 135:
  
 Xue J, Lu Z, Liu W, Wang S, Lu D, Wang X, He X (2020). The genetic arms race between plant and //Xanthomonas//: lessons learned from TALE biology. Sci. China Life Sci. 63. DOI: [[https://doi.org/10.1007/s11427-020-1699-4|10.1007/s11427-020-1699-4]] Xue J, Lu Z, Liu W, Wang S, Lu D, Wang X, He X (2020). The genetic arms race between plant and //Xanthomonas//: lessons learned from TALE biology. Sci. China Life Sci. 63. DOI: [[https://doi.org/10.1007/s11427-020-1699-4|10.1007/s11427-020-1699-4]]
 +
 +Zhang B, Han X, Yuan W, Zhang H (2022). TALEs as double-edged swords in plant-pathogen interactions: Progress, challenges, and perspectives. Plant. Commun. 3: 100318. DOI: [[https://doi.org/10.1016/j.xplc.2022.100318|10.1016/j.xplc.2022.100318]]
  
 Zhang J, Yin Z, White F (2015). TAL effectors and the executor //R// genes. Front. Plant Sci. 6: 641. DOI: [[https://doi.org/10.3389/fpls.2015.00641|10.3389/fpls.2015.00641]] Zhang J, Yin Z, White F (2015). TAL effectors and the executor //R// genes. Front. Plant Sci. 6: 641. DOI: [[https://doi.org/10.3389/fpls.2015.00641|10.3389/fpls.2015.00641]]
 +
 +===== Acknowledgements =====
 +
 +This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology).
  
bacteria/t3e/avrbs3.1673259603.txt.gz · Last modified: 2023/01/09 10:20 by 127.0.0.1