This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
bacteria:t3e:avrbs3 [2020/08/27 11:00] – st | bacteria:t3e:avrbs3 [2025/07/04 23:06] (current) – jfpothier | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== AvrBs3 ====== | + | ====== |
Author: [[https:// | Author: [[https:// | ||
Internal reviewer: [[https:// | Internal reviewer: [[https:// | ||
- | Expert reviewer: | + | Expert reviewer: |
Class: AvrBs3\\ | Class: AvrBs3\\ | ||
Family: Transcription Activator-Like (TAL) Effectors, TALEs (previously: | Family: Transcription Activator-Like (TAL) Effectors, TALEs (previously: | ||
Prototype: AvrBs3 (// | Prototype: AvrBs3 (// | ||
- | RefSeq | + | GenBank |
- | 3D structure: [[https:// | + | RefSeq ID: [[https:// |
+ | 3D structure: [[https:// | ||
===== Biological function ===== | ===== Biological function ===== | ||
Line 15: | Line 16: | ||
=== How discovered? === | === How discovered? === | ||
- | The gene //avrBs3 //was cloned in 1989 and was the first gene described of the TAL effector (TALE) family (Minsavage //et al//., 1990). Different resistant and susceptible cultivars of peppers were inoculated with //Xcv// strains 71-21 and 82-8 (Bonas //et al//., 1989). The pepper cultivar ECW-30R carries the resistance gene //Bs3 //and inoculation of these //Xcv// strains provoked a hypersensitive response (HR) (Bonas //et al//., 1989). This indicated that both //Xcv// strains contained //avrBs3//. | + | The gene //avrBs3// was cloned in 1989 and was the first gene described of the TAL effector (TALE) family (Minsavage //et al//., 1990). Different resistant and susceptible cultivars of peppers were inoculated with //Xcv// strains 71-21 and 82-8 (Bonas //et al//., 1989). The pepper cultivar ECW-30R carries the resistance gene //Bs3// and inoculation of these //Xcv// strains provoked a hypersensitive response (HR) (Bonas //et al//., 1989). This indicated that both //Xcv// strains contained //avrBs3//. |
=== (Experimental) evidence for being a T3E === | === (Experimental) evidence for being a T3E === | ||
AvrBs3 is secreted and translocated into the plant via the Hrp type III secretion system (Bonas //et al//., 1991; Van den Ackerveken //et al//., 1996; Bonas //et al//., 1999). In contrast to wild-type bacteria, an //Xcv// mutant carrying a deletion in the conserved //hrp// gene //hrcV// did not secrete AvrBs3 indicating that AvrBs3 is transported by the Hrp system (Rossier //et al//., 1999). The first 10 and 50 amino acids of AvrBs3 are required for secretion and translocation, | AvrBs3 is secreted and translocated into the plant via the Hrp type III secretion system (Bonas //et al//., 1991; Van den Ackerveken //et al//., 1996; Bonas //et al//., 1999). In contrast to wild-type bacteria, an //Xcv// mutant carrying a deletion in the conserved //hrp// gene //hrcV// did not secrete AvrBs3 indicating that AvrBs3 is transported by the Hrp system (Rossier //et al//., 1999). The first 10 and 50 amino acids of AvrBs3 are required for secretion and translocation, | ||
+ | |||
=== Regulation === | === Regulation === | ||
- | Unlike most other type III effectors, expression of //avrBs3// is not dependend on the hrp regulon and the gene does not contain a PIP box in its promoter region. It is expressed constitutively in cells grown in minimal or complex medium and in planta (Knoop //et al//., 1991). | + | Unlike most other type III effectors, expression of //avrBs3// is not dependend on the hrp regulon and the gene does not contain a PIP box in its promoter region. It is expressed constitutively in cells grown in minimal or complex medium and //in planta// (Knoop //et al//., 1991). |
=== Phenotypes === | === Phenotypes === | ||
AvrBs3, as well as other members of the TALE family, function as specific transcription factors in plant cells. These proteins bind to specific sequences in promoters and induce expression of downstream genes. The DNA-binding specificity is encoded in the order of individual 34-amino acid repeats which each recognize one DNA base. Different TALEs typically contain different repeats and accordingly bind to different DNA sequences and target different host genes. The contributions of individual TALEs to virulence can thus be quite diverse. | AvrBs3, as well as other members of the TALE family, function as specific transcription factors in plant cells. These proteins bind to specific sequences in promoters and induce expression of downstream genes. The DNA-binding specificity is encoded in the order of individual 34-amino acid repeats which each recognize one DNA base. Different TALEs typically contain different repeats and accordingly bind to different DNA sequences and target different host genes. The contributions of individual TALEs to virulence can thus be quite diverse. | ||
- | Expression analysis using gene promoter fusion and western blot analysis demonstrated that //avrBs3// was expressed and resulted in a 122 kDa protein (1164 aa) which was detectable using a specific polyclonal antibody (Bonas //et al//., 1989). The AvrBs3 effector protein elicits two different types of responses in resistant or susceptible plants. In susceptible pepper plants (Early Cal Wonder; ECW), hypertrophy (i.e. enlargement of mesophyll cells) is triggered by AvrBs3 (Bonas //et al//., 1989; Bonas //et al//., 1991; Marois //et al//., 2002). // | + | Expression analysis using gene promoter fusion and western blot analysis demonstrated that //avrBs3// was expressed and resulted in a 122 kDa protein (1164 aa) which was detectable using a specific polyclonal antibody (Bonas //et al//., 1989). The AvrBs3 effector protein elicits two different types of responses in resistant or susceptible plants. In susceptible pepper plants (Early Cal Wonder; ECW), hypertrophy (i.e. enlargement of mesophyll cells) is triggered by AvrBs3 (Bonas //et al//., 1989; Bonas //et al//., 1991; Marois //et al//., 2002). // |
In resistant pepper plants, the promoter of //Bs3// contains a //UPA// box that is bound by AvrBs3 resulting in the transcription of the gene //Bs3//. //Bs3// encodes a protein that is homologous to flavine-dependent mono-oxygenases (Römer //et al//., 2007) and its expression causes rapid cell death thus preventing the spread of the pathogen (Bonas //et al//., 1989; Bonas //et al//., 1991). | In resistant pepper plants, the promoter of //Bs3// contains a //UPA// box that is bound by AvrBs3 resulting in the transcription of the gene //Bs3//. //Bs3// encodes a protein that is homologous to flavine-dependent mono-oxygenases (Römer //et al//., 2007) and its expression causes rapid cell death thus preventing the spread of the pathogen (Bonas //et al//., 1989; Bonas //et al//., 1991). | ||
The central region of the //avrBs3// gene consists of 17.5 nearly identical 102 bp repeats. Each repeat encodes 34 amino acids (Bonas //et al//., 1989). Repeat variable di-residues (RVDs) at positions 12 and 13 determine the specificity of each repeat (Boch //et al//., 2009; Moscou & Bogdanove, 2009). Rearranging individual repeats enables construction of any desired DNA-binding specificity (Boch //et al.//, 2009). | The central region of the //avrBs3// gene consists of 17.5 nearly identical 102 bp repeats. Each repeat encodes 34 amino acids (Bonas //et al//., 1989). Repeat variable di-residues (RVDs) at positions 12 and 13 determine the specificity of each repeat (Boch //et al//., 2009; Moscou & Bogdanove, 2009). Rearranging individual repeats enables construction of any desired DNA-binding specificity (Boch //et al.//, 2009). | ||
+ | |||
=== Localization === | === Localization === | ||
The //avrBs3// gene is localized on pXV11, a self-transmissible plasmid, and was initially isolated from //Xcv// strain 71-21 (Bonas //et al//., 1989). Using complementation of //Xcv// strain 85-10 (virulent on pepper ECW-30R), a 5-kb fragment including //avrBs3// was discovered (Bonas //et al//., 1989). | The //avrBs3// gene is localized on pXV11, a self-transmissible plasmid, and was initially isolated from //Xcv// strain 71-21 (Bonas //et al//., 1989). Using complementation of //Xcv// strain 85-10 (virulent on pepper ECW-30R), a 5-kb fragment including //avrBs3// was discovered (Bonas //et al//., 1989). | ||
+ | |||
=== Molecular function === | === Molecular function === | ||
Line 41: | Line 47: | ||
Importin alpha (Szurek //et al.//, 2001) interacts with the nuclear localization sequences of AvrBs3. The basal transcription factor IIA, gamma subunit from rice interacts with a region in the C-terminal domain of TALEs (Yuan //et al//., 2016) and similar interactions might be possible for AvrBs3, too. AvrBs3 and the TALE-family of effectors bind to DNA (Kay //et al//., 2007; Römer //et al//., 2007) with their N-terminal domain exhibiting general DNA-binding properties (Gao //et al.//, 2012) and the repeat region facilitating specific interaction to DNA bases (Boch //et al//., 2009; Moscou & Bogdanove, 2009). | Importin alpha (Szurek //et al.//, 2001) interacts with the nuclear localization sequences of AvrBs3. The basal transcription factor IIA, gamma subunit from rice interacts with a region in the C-terminal domain of TALEs (Yuan //et al//., 2016) and similar interactions might be possible for AvrBs3, too. AvrBs3 and the TALE-family of effectors bind to DNA (Kay //et al//., 2007; Römer //et al//., 2007) with their N-terminal domain exhibiting general DNA-binding properties (Gao //et al.//, 2012) and the repeat region facilitating specific interaction to DNA bases (Boch //et al//., 2009; Moscou & Bogdanove, 2009). | ||
+ | |||
===== Conservation ===== | ===== Conservation ===== | ||
Line 49: | Line 56: | ||
=== In other plant pathogens/ | === In other plant pathogens/ | ||
- | Yes: Genes homologous to //avrBs3// of // | + | Yes: Genes homologous to //avrBs3// of // |
===== References ===== | ===== References ===== | ||
Line 62: | Line 70: | ||
de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH, Koszinowski J, Heuer H, Strauß A, Lahaye T (2013). Breaking the DNA-binding code of //Ralstonia solanacearum// | de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH, Koszinowski J, Heuer H, Strauß A, Lahaye T (2013). Breaking the DNA-binding code of //Ralstonia solanacearum// | ||
- | de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T (2014). Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nuc. Acids Res. 42: 7436-7449. DOI: [[https:// | + | de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T (2014). Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nuc. Acids Res. 42: 7436-7449. DOI: [[https:// |
de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T (2015). DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nuc. Acids Res. 43: 10065-10080. DOI: [[https:// | de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T (2015). DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nuc. Acids Res. 43: 10065-10080. DOI: [[https:// | ||
Line 85: | Line 93: | ||
Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C (2011). Evolution of an endofungal lifestyle: Deductions from the // | Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C (2011). Evolution of an endofungal lifestyle: Deductions from the // | ||
+ | |||
+ | Liu L, Zhang Y, Liu M, Wei W, Yi C, Peng J (2020). Structural insights into the specific recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL effectors. J. Mol. Biol. 432: | ||
Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716-719. DOI: [[https:// | Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716-719. DOI: [[https:// | ||
Line 104: | Line 114: | ||
Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http:// | Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http:// | ||
- | Szurek B, Marois E, Bonas U, Van den Ackerveken G (2001). Eukaryotic features of the // | + | Szurek B, Marois E, Bonas U, Van den Ackerveken G (2001). Eukaryotic features of the // |
Szurek B, Rossier O, Hause G, Bonas U (2002). Type III-dependent translocation of the // | Szurek B, Rossier O, Hause G, Bonas U (2002). Type III-dependent translocation of the // | ||
Line 110: | Line 120: | ||
Van den Ackerveken G, Marois E, Bonas U (1996). Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307-1316. DOI: [[https:// | Van den Ackerveken G, Marois E, Bonas U (1996). Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307-1316. DOI: [[https:// | ||
- | Yin P, Deng D, Yan C, Pan X, Xi JJ, Yan N, Shi Y (2012). Specific DNA-RNA hybrid recognition by TAL effectors. Cell Rep. 2: 707-713. DOI: 1[[https:// | + | Yin P, Deng D, Yan C, Pan X, Xi JJ, Yan N, Shi Y (2012). Specific DNA-RNA hybrid recognition by TAL effectors. Cell Rep. 2: 707-713. DOI: [[https:// |
===== Further reading ===== | ===== Further reading ===== | ||
Line 125: | Line 135: | ||
Xue J, Lu Z, Liu W, Wang S, Lu D, Wang X, He X (2020). The genetic arms race between plant and // | Xue J, Lu Z, Liu W, Wang S, Lu D, Wang X, He X (2020). The genetic arms race between plant and // | ||
+ | |||
+ | Zhang B, Han X, Yuan W, Zhang H (2022). TALEs as double-edged swords in plant-pathogen interactions: | ||
Zhang J, Yin Z, White F (2015). TAL effectors and the executor //R// genes. Front. Plant Sci. 6: 641. DOI: [[https:// | Zhang J, Yin Z, White F (2015). TAL effectors and the executor //R// genes. Front. Plant Sci. 6: 641. DOI: [[https:// | ||
+ | |||
+ | ===== Acknowledgements ===== | ||
+ | |||
+ | This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology). | ||