This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
bacteria:t3e:avrbs3 [2020/08/07 13:45] – jensboch | bacteria:t3e:avrbs3 [2025/02/21 12:08] (current) – joana_costa | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== AvrBs3 ====== | + | ====== |
Author: [[https:// | Author: [[https:// | ||
- | Internal reviewer: Jens Boch\\ | + | Internal reviewer: |
- | Expert reviewer: | + | Expert reviewer: |
Class: AvrBs3\\ | Class: AvrBs3\\ | ||
Family: Transcription Activator-Like (TAL) Effectors, TALEs (previously: | Family: Transcription Activator-Like (TAL) Effectors, TALEs (previously: | ||
Prototype: AvrBs3 (// | Prototype: AvrBs3 (// | ||
- | RefSeq | + | GenBank |
- | 3D structure: [[https:// | + | RefSeq ID: [[https:// |
+ | 3D structure: [[https:// | ||
===== Biological function ===== | ===== Biological function ===== | ||
Line 15: | Line 16: | ||
=== How discovered? === | === How discovered? === | ||
- | The gene //avrBs3 //was cloned in 1989 and was the first gene described of the TAL effector (TALE) family (Minsavage //et al//., 1990). Different resistant and susceptible cultivars of peppers were inoculated with //Xcv// strains 71-21 and 82-8 (Bonas //et al//., 1989). The pepper cultivar ECW-30R carries the resistance gene //Bs3 //and inoculation of these //Xcv// strains provoked a hypersensitive response (HR) (Bonas //et al//., 1989). This indicated that both //Xcv// strains contained //avrBs3//. | + | The gene //avrBs3// was cloned in 1989 and was the first gene described of the TAL effector (TALE) family (Minsavage //et al//., 1990). Different resistant and susceptible cultivars of peppers were inoculated with //Xcv// strains 71-21 and 82-8 (Bonas //et al//., 1989). The pepper cultivar ECW-30R carries the resistance gene //Bs3// and inoculation of these //Xcv// strains provoked a hypersensitive response (HR) (Bonas //et al//., 1989). This indicated that both //Xcv// strains contained //avrBs3//. |
=== (Experimental) evidence for being a T3E === | === (Experimental) evidence for being a T3E === | ||
- | AvrBs3 is secreted and translocated into the plant via the Hrp type III secretion system (Bonas //et al//., 1991; Van den Ackerveken //et al//., 1996; Bonas //et al//., 1999). In contrast to wild-type bacteria, an //Xcv// mutant carrying a deletion in the conserved //hrp// gene //hrcV// did not secrete AvrBs3 indicating that AvrBs3 is transported by the Hrp system (Rossier //et al//., 1999). In its C-terminal domain, AvrBs3 carries an acidic activation domain which is functional in plant cells (Van den Ackerveken //et al//., 1996). Two nuclear localization signals in the C-terminal domain of AvrBs3 facilitate transport into the plant cell nucleus (Van den Ackerveken //et al//., 1996; Szurek //et al//., 2002). These eukaryotic features support the role of AvrBs3 and members of the TALE family within the eukaryotic host cell. | + | AvrBs3 is secreted and translocated into the plant via the Hrp type III secretion system (Bonas //et al//., 1991; Van den Ackerveken //et al//., 1996; Bonas //et al//., 1999). In contrast to wild-type bacteria, an //Xcv// mutant carrying a deletion in the conserved //hrp// gene //hrcV// did not secrete AvrBs3 indicating that AvrBs3 is transported by the Hrp system (Rossier //et al//., 1999). The first 10 and 50 amino acids of AvrBs3 are required for secretion and translocation, |
=== Regulation === | === Regulation === | ||
- | Unlike most other type III effectors, expression of //avrBs3// is not dependend on the hrp regulon and the gene does not contain a PIP box in its promoter region. It is expressed constitutively in cells grown in minimal or complex medium and in planta (Knoop //et al//., 1991). | + | Unlike most other type III effectors, expression of //avrBs3// is not dependend on the hrp regulon and the gene does not contain a PIP box in its promoter region. It is expressed constitutively in cells grown in minimal or complex medium and //in planta// (Knoop //et al//., 1991). |
=== Phenotypes === | === Phenotypes === | ||
- | AvrBs3, as well as other members of the TALE-family, function as specific transcription factors in plant cells. These proteins bind to specific sequences in promoters and induce expression of target | + | AvrBs3, as well as other members of the TALE family, function as specific transcription factors in plant cells. These proteins bind to specific sequences in promoters and induce expression of downstream |
- | Expression analysis using gene promoter fusion and western blot analysis demonstrated that //avrBs3// was expressed and resulted in a 122 kDa protein (1164 aa) which was detectable using a specific polyclonal antibody (Bonas //et al//., 1989). The AvrBs3 effector protein elicits two different types of responses in resistant or susceptible plants. Differential cDNA analysis from susceptible pepper plants infected with //Xcv// with or without AvrBs3 led to the discovery of //upa// (upregulated by AvrBs3) genes whose expression is induced by AvrBs3. These //upa// genes all share a conserved promoter element, known as the //UPA// box (Kay //et al.//, 2007). //upa20// act as a master regulator of cell enlargement causing the hypertrophy symptoms associated with AvrBs3. Silencing of //upa20// decreased cell hypertrophy in infected plants while the expression of //upa20// led to hypertrophy in uninfected plants (Kay //et al//., 2007). In resistant pepper plants, the promoter of //Bs3// contains a //UPA// box that is bound by AvrBs3 resulting in the transcription of the gene //Bs3//. //Bs3// encodes a protein that is homologous to flavine-dependent mono-oxygenases and its expression causes rapid cell death. | + | Expression analysis using gene promoter fusion and western blot analysis demonstrated that //avrBs3// was expressed and resulted in a 122 kDa protein (1164 aa) which was detectable using a specific polyclonal antibody (Bonas //et al//., 1989). The AvrBs3 effector protein elicits two different types of responses in resistant or susceptible plants. In susceptible pepper plants (Early Cal Wonder; ECW), hypertrophy (i.e. enlargement of mesophyll cells) is triggered by AvrBs3 (Bonas //et al//., 1989; Bonas //et al//., 1991; Marois //et al//., 2002). // |
- | The central region of the //avrBs3// gene consists | + | In resistant pepper plants, |
- | Gene //Bs3// was introduced into the ECW background to generate near-isogenic line resistant ECW-30R (Bonas | + | The central region of the //avrBs3// gene consists of 17.5 nearly identical 102 bp repeats. Each repeat encodes 34 amino acids (Bonas //et al//., 1989). |
=== Localization === | === Localization === | ||
The //avrBs3// gene is localized on pXV11, a self-transmissible plasmid, and was initially isolated from //Xcv// strain 71-21 (Bonas //et al//., 1989). Using complementation of //Xcv// strain 85-10 (virulent on pepper ECW-30R), a 5-kb fragment including //avrBs3// was discovered (Bonas //et al//., 1989). | The //avrBs3// gene is localized on pXV11, a self-transmissible plasmid, and was initially isolated from //Xcv// strain 71-21 (Bonas //et al//., 1989). Using complementation of //Xcv// strain 85-10 (virulent on pepper ECW-30R), a 5-kb fragment including //avrBs3// was discovered (Bonas //et al//., 1989). | ||
- | === Enzymatic | + | === Molecular |
DNA-binding protein. Transcriptional activator. | DNA-binding protein. Transcriptional activator. | ||
Line 40: | Line 41: | ||
=== Interaction partners === | === Interaction partners === | ||
- | Importin alpha (Szurek //et al.//, 2001) interacts with the nuclear localization sequences of AvrBs3. The basal transcription factor IIA, gamma subunit from rice interacts with a region in the C-terminal domain of TALEs (Yuan //et al//., 2016) and similar interactions might be possible for AvrBs3, too. AvrBs3 and the TALE-family of effectors bind to DNA (Kay //et al//., 2007; Römer //et al//., 2007) with their N-terminal domain exhibiting general DNA-binding properties (Gao //et al.//, 2012) and the repeat region facilitating specific interaction to DNA bases (Boch //et al//., 2009; Moscou | + | Importin alpha (Szurek //et al.//, 2001) interacts with the nuclear localization sequences of AvrBs3. The basal transcription factor IIA, gamma subunit from rice interacts with a region in the C-terminal domain of TALEs (Yuan //et al//., 2016) and similar interactions might be possible for AvrBs3, too. AvrBs3 and the TALE-family of effectors bind to DNA (Kay //et al//., 2007; Römer //et al//., 2007) with their N-terminal domain exhibiting general DNA-binding properties (Gao //et al.//, 2012) and the repeat region facilitating specific interaction to DNA bases (Boch //et al//., 2009; Moscou |
===== Conservation ===== | ===== Conservation ===== | ||
=== In xanthomonads === | === In xanthomonads === | ||
- | Yes in many pathovars, but not necesssarily all strains within a pathovar. | + | Yes, in many pathovars, but not necesssarily all strains within a pathovar. |
=== In other plant pathogens/ | === In other plant pathogens/ | ||
- | Yes: Genes homologous to //avrBs3// of // | + | Yes: Genes homologous to //avrBs3// of // |
===== References ===== | ===== References ===== | ||
Line 62: | Line 63: | ||
de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH, Koszinowski J, Heuer H, Strauß A, Lahaye T (2013). Breaking the DNA-binding code of //Ralstonia solanacearum// | de Lange O, Schreiber T, Schandry N, Radeck J, Braun KH, Koszinowski J, Heuer H, Strauß A, Lahaye T (2013). Breaking the DNA-binding code of //Ralstonia solanacearum// | ||
- | de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T (2014). Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nuc. Acids Res. 42: 7436-7449. DOI: [[https:// | + | de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T (2014). Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nuc. Acids Res. 42: 7436-7449. DOI: [[https:// |
de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T (2015). DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nuc. Acids Res. 43: 10065-10080. DOI: [[https:// | de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T (2015). DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nuc. Acids Res. 43: 10065-10080. DOI: [[https:// | ||
Line 79: | Line 80: | ||
Hopkins CM, White FF, Choi SH, Guo A, Leach JE (1992). Identification of a family of avirulence genes from // | Hopkins CM, White FF, Choi SH, Guo A, Leach JE (1992). Identification of a family of avirulence genes from // | ||
- | |||
- | Ji ZY, Xiong L, Zou LF, Li YR, Ma WX, Liu L, Zakria M, Ji GH, Chen GY (2014). AvrXa7-Xa7 mediated defense in rice can be suppressed by transcriptional activator-like effectors TAL6 and TAL11a from // | ||
Kay S, Hahn S, Marois E, Hause G, Bonas U (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318: 648-651. DOI: [[http:// | Kay S, Hahn S, Marois E, Hause G, Bonas U (2007). A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318: 648-651. DOI: [[http:// | ||
Line 87: | Line 86: | ||
Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C (2011). Evolution of an endofungal lifestyle: Deductions from the // | Lackner G, Moebius N, Partida-Martinez LP, Boland S, Hertweck C (2011). Evolution of an endofungal lifestyle: Deductions from the // | ||
+ | |||
+ | Liu L, Zhang Y, Liu M, Wei W, Yi C, Peng J (2020). Structural insights into the specific recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL effectors. J. Mol. Biol. 432: | ||
Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716-719. DOI: [[https:// | Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335: 716-719. DOI: [[https:// | ||
Line 102: | Line 103: | ||
Rossier O, Wengelnik K, Hahn K, Bonas U (1999). The // | Rossier O, Wengelnik K, Hahn K, Bonas U (1999). The // | ||
- | Scheibner F, Marillonnet S, Büttner D (2017). The TAL effector AvrBs3 from // | + | Scheibner F, Marillonnet S, Büttner D (2017). The TAL effector AvrBs3 from // |
Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http:// | Stella S, Molina R, Yefimenko I, Prieto J, Silva G, Bertonati C, Juillerat A, Duchateau P, Montoya G (2013). Structure of the AvrBs3–DNA complex provides new insights into the initial thymine-recognition mechanism. Acta Cryst. 69: 1707-1716. DOI: [[http:// | ||
- | Szurek B, Marois E, Bonas U, Van den Ackerveken G (2001). Eukaryotic features of the // | + | Szurek B, Marois E, Bonas U, Van den Ackerveken G (2001). Eukaryotic features of the // |
Szurek B, Rossier O, Hause G, Bonas U (2002). Type III-dependent translocation of the // | Szurek B, Rossier O, Hause G, Bonas U (2002). Type III-dependent translocation of the // | ||
Line 112: | Line 113: | ||
Van den Ackerveken G, Marois E, Bonas U (1996). Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307-1316. DOI: [[https:// | Van den Ackerveken G, Marois E, Bonas U (1996). Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307-1316. DOI: [[https:// | ||
- | Yin P, Deng D, Yan C, Pan X, Xi JJ, Yan N, Shi Y (2012). Specific DNA-RNA hybrid recognition by TAL effectors. Cell Rep. 2: 707-713. DOI: 1[[https:// | + | Yin P, Deng D, Yan C, Pan X, Xi JJ, Yan N, Shi Y (2012). Specific DNA-RNA hybrid recognition by TAL effectors. Cell Rep. 2: 707-713. DOI: [[https:// |
===== Further reading ===== | ===== Further reading ===== | ||
Line 126: | Line 127: | ||
Hutin M, Pérez-Quintero AL, Lopez C, Szurek B (2015). MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Front. Plant Sci. 6: 535. DOI: [[https:// | Hutin M, Pérez-Quintero AL, Lopez C, Szurek B (2015). MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Front. Plant Sci. 6: 535. DOI: [[https:// | ||
- | Scholze H, Boch J (2010). TAL effector-DNA specificity. Virulence 1: 428-432. DOI: [[https:// | + | Xue J, Lu Z, Liu W, Wang S, Lu D, Wang X, He X (2020). The genetic arms race between plant and // |
- | Scholze | + | Zhang B, Han X, Yuan W, Zhang H (2022). TALEs as double-edged swords in plant-pathogen interactions: |
- | + | ||
- | Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X, Wang S (2016). A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. Elife 5: DOI: [[https:// | + | |
Zhang J, Yin Z, White F (2015). TAL effectors and the executor //R// genes. Front. Plant Sci. 6: 641. DOI: [[https:// | Zhang J, Yin Z, White F (2015). TAL effectors and the executor //R// genes. Front. Plant Sci. 6: 641. DOI: [[https:// | ||
+ | |||
+ | ===== Acknowledgements ===== | ||
+ | |||
+ | This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology). | ||