This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
bacteria:t3e:avrbs2 [2020/07/03 08:59] – rkoebnik | bacteria:t3e:avrbs2 [2025/02/21 11:40] (current) – joana_costa | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== AvrBs2 ====== | + | ====== |
Author: [[https:// | Author: [[https:// | ||
- | Internal reviewer: [[https:// | + | Internal reviewer: [[https:// |
- | Expert reviewer: FIXME | + | |
Class: AvrBs2\\ | Class: AvrBs2\\ | ||
Protein family: AvrBs2\\ | Protein family: AvrBs2\\ | ||
- | Prototype: AvrBs2 (// | + | Prototype: AvrBs2 (// |
- | RefSeq | + | GenBank |
+ | RefSeq ID: [[https:// | ||
+ | Synonym: AvrRxc1/3 (Ignatov //et al.//, 2002)\\ | ||
3D structure: Unknown | 3D structure: Unknown | ||
Line 18: | Line 19: | ||
=== (Experimental) evidence for being a T3E === | === (Experimental) evidence for being a T3E === | ||
- | AvrBs2 | + | Mary Beth Mudgett and coworkers provided the first evidence that AvrBs2 |
+ | |||
+ | Type III-dependent translocation of AvrBs2 was later confirmed using the calmodulin-dependent | ||
+ | |||
+ | Once the effector domain of AvrBs2 that is recognized by //Bs2// pepper plants was identified (Mudgett //et al.//, 2000), this knowledge was used to construct a Tn// | ||
=== Regulation === | === Regulation === | ||
Line 26: | Line 31: | ||
=== Phenotypes === | === Phenotypes === | ||
- | * AvrBs2 has been demonstrated to be required for full virulence | + | * The loss of a functional |
+ | * AvrBs2 has been demonstrated to be required for full virulence of //Xcv//, //X. oryzae// | ||
* Recognition of // | * Recognition of // | ||
+ | * It was shown in pepper and tomato lines without // | ||
+ | * AvrBs2 contributes to //X. oryzae// | ||
+ | * AvrBs2 transiently expressed in // | ||
+ | * Induced expression of AvrBs2 in transgenic cell cultures was shown to dramatically suppress flg22-induced and chitin-induced immune responses, such as ROS burst and PR gene expression (Li //et al//., 2015). | ||
+ | * A ∆// | ||
+ | * XopN and AvrBS2 were shown to significantly contribute to virulence of //X. oryzae// | ||
+ | |||
+ | === Localization === | ||
+ | |||
+ | The // | ||
+ | |||
+ | === Enzymatic function === | ||
+ | |||
+ | Shown activity of glycerolphosphodiesterase catalytic site // | ||
+ | |||
+ | === Interaction partners === | ||
+ | |||
+ | Gene-for-gene relationship with corresponding resistance gene // | ||
+ | |||
+ | ===== Conservation ===== | ||
+ | |||
+ | === In xanthomonads === | ||
+ | |||
+ | Yes (//e.g.//, //X//. // | ||
+ | |||
+ | === In other plant pathogens/ | ||
+ | |||
+ | No report. | ||
+ | |||
+ | ===== Biological function ===== | ||
+ | |||
+ | === How discovered? === | ||
+ | |||
+ | Indirectly – the pathovars that induced // | ||
+ | |||
+ | === (Experimental) evidence for being a T3E === | ||
+ | |||
+ | AvrBs2 fused to the calmodulin-activated adenylate cyclase domain was shown to translocate into plant cells (cytosol), detected through rise of cAMP levels inside the plant tissue. The // | ||
+ | |||
+ | === Regulation === | ||
+ | |||
+ | qRT-PCR revealed that transcript levels of 15 out of 18 tested non-TAL effector genes (as well as the regulatory genes // | ||
+ | |||
+ | Transcriptome analysis (RNA-seq) and qRT-PCR have shown that // | ||
+ | |||
+ | === Phenotypes === | ||
+ | |||
+ | * AvrBs2 has been demonstrated to be required for full virulence of //X. euvesicatoria// | ||
+ | * Recognition of AvrBs2 by OsHRL makes rice more resistant against //X. oryzae// | ||
* It was shown in pepper and tomato lines without //Bs2 //that mutations of catalytic residues in the glycerolphosphodiesterase did not interfere with the ability of the plant to recognize AvrBs2 through the cognate R gene // | * It was shown in pepper and tomato lines without //Bs2 //that mutations of catalytic residues in the glycerolphosphodiesterase did not interfere with the ability of the plant to recognize AvrBs2 through the cognate R gene // | ||
* AvrBs2 contributes to //X. oryzae// | * AvrBs2 contributes to //X. oryzae// | ||
Line 33: | Line 88: | ||
* Induced expression of AvrBs2 in transgenic cell cultures was shown to dramatically suppress flg22-induced and chitin-induced immune responses, such as ROS burst and PR gene expression (Li //et al//., 2015). | * Induced expression of AvrBs2 in transgenic cell cultures was shown to dramatically suppress flg22-induced and chitin-induced immune responses, such as ROS burst and PR gene expression (Li //et al//., 2015). | ||
* A ∆// | * A ∆// | ||
+ | * // | ||
=== Localization === | === Localization === | ||
Line 50: | Line 105: | ||
=== In xanthomonads === | === In xanthomonads === | ||
- | Yes (//e.g.//, //X//. // | + | Yes (//e.g.//, //X//. // |
+ | |||
+ | Field strains of //X. euvesicatoria// | ||
=== In other plant pathogens/ | === In other plant pathogens/ | ||
Line 57: | Line 114: | ||
===== References ===== | ===== References ===== | ||
+ | |||
+ | Anderson DM, Schneewind O (1997). A mRNA signal for the type III secretion of Yop proteins by //Yersinia enterocolitica// | ||
Casper-Lindley C. Dahlbeck D, Clark ET, Staskawicz BJ (2002). Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells. Proc. Natl. Acad. Sci. USA 99: 8336-8341. DOI: [[https:// | Casper-Lindley C. Dahlbeck D, Clark ET, Staskawicz BJ (2002). Direct biochemical evidence for type III secretion-dependent translocation of the AvrBs2 effector protein into plant cells. Proc. Natl. Acad. Sci. USA 99: 8336-8341. DOI: [[https:// | ||
Line 62: | Line 121: | ||
Coplin DL (1989). Plasmids and their role in the evolution of plant pathogenic bacteria. Ann. Rev. Phytopathol. 27: 187-212. DOI: [[https:// | Coplin DL (1989). Plasmids and their role in the evolution of plant pathogenic bacteria. Ann. Rev. Phytopathol. 27: 187-212. DOI: [[https:// | ||
- | Gassmann W, Dahlbeck D, Chesnokova O, Minsavage GV, Jones JB, Staskawicz BJ (2000). Molecular evolution of virulence in natural field strains of // | + | Deb S, Ghosh P, Patel HK, Sonti RV (2020). Interaction of the // |
+ | |||
+ | Gassmann W, Dahlbeck D, Chesnokova O, Minsavage GV, Jones JB, Staskawicz BJ (2000). Molecular evolution of virulence in natural field strains of // | ||
+ | |||
+ | Ghosh P (2004). Process of protein transport by the type III secretion system. Microbiol. Mol. Biol. Rev. 68: 771-795. DOI: [[https:// | ||
+ | |||
+ | Habyarimana F, Ahmer BM (2013). More evidence for secretion signals within the mRNA of type 3 secreted effectors. J. Bacteriol. 195: 2117-2118. DOI: [[https:// | ||
+ | |||
+ | Ignatov AN, Monakhos GF, Dzhalilov FS, Pozmogova GV (2002). Avirulence gene from // | ||
Kearney B, Staskawicz BJ (1990). Widespread distribution and fitness contribution of // | Kearney B, Staskawicz BJ (1990). Widespread distribution and fitness contribution of // | ||
Li S, Wang Y, Wang S, Fang A, Wang J, Liu L, Zhang K, Mao Y, Sun W (2015). The type III effector AvrBs2 in // | Li S, Wang Y, Wang S, Fang A, Wang J, Liu L, Zhang K, Mao Y, Sun W (2015). The type III effector AvrBs2 in // | ||
+ | |||
+ | Liao ZX, Li JY, Mo XY, Ni Z, Jiang W, He YQ, Huang S (2020). Type III effectors // | ||
Liu Y, Long J, Shen D, Song C (2016). // | Liu Y, Long J, Shen D, Song C (2016). // | ||
Line 74: | Line 143: | ||
Minsavage GV, Dahlbeck D, Whalen MC, Kearney B, Bonas U, Staskawicz BJ, Stall RE (1990). Gene-for-gene relationships specifying disease resistance in // | Minsavage GV, Dahlbeck D, Whalen MC, Kearney B, Bonas U, Staskawicz BJ, Stall RE (1990). Gene-for-gene relationships specifying disease resistance in // | ||
- | Mudgett MB, Chesnokova O, Dahlbeck D, Clark ET, Rossier O, Bonas U, Staskawicz BJ (2000). Molecular signals required for type III secretion and translocation of the // | + | Mudgett MB, Chesnokova O, Dahlbeck D, Clark ET, Rossier O, Bonas U, Staskawicz BJ (2000). Molecular signals required for type III secretion and translocation of the // |
Mutka AM, Fentress SJ, Sher JW, Berry JC, Pretz C, Nusinow DA, Bart R (2016). Quantitative, | Mutka AM, Fentress SJ, Sher JW, Berry JC, Pretz C, Nusinow DA, Bart R (2016). Quantitative, | ||
Line 80: | Line 149: | ||
Park SR, Moon SJ, Shin DJ, Kim MG, Hwang DJ, Bae SC, Kim JG , Yi BY, Byun MO (2010). Isolation and characterization of rice // | Park SR, Moon SJ, Shin DJ, Kim MG, Hwang DJ, Bae SC, Kim JG , Yi BY, Byun MO (2010). Isolation and characterization of rice // | ||
- | Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during // | + | Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB (2004). A genetic screen to isolate type III effectors translocated into pepper cells during // |
- | Swords KM, Dahlbeck D, Kearney B, Roy M, Staskawicz BJ (1996). Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in // | + | Swords KM, Dahlbeck D, Kearney B, Roy M, Staskawicz BJ (1996). Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in // |
- | + | ||
- | Timilsina S, Abrahamian P, Potnis N, Minsavage GV, White FF, Staskawicz BJ, Jones JB, Vallad GE, Goss EM (2016). Analysis of sequenced genomes of Xanthomonas perforans identifies candidate targets for resistance breeding in tomato. Phytopathology 106: 1097-1104. DOI: [[https:// | + | |
Wei C, Ding T, Chang C, Yu C, Li X, Liu Q (2019). Global regulator PhoP is necessary for motility, biofilm formation, exoenzyme production and virulence of // | Wei C, Ding T, Chang C, Yu C, Li X, Liu Q (2019). Global regulator PhoP is necessary for motility, biofilm formation, exoenzyme production and virulence of // | ||
- | Wichmann G, Bergelson J (2004). Effector genes of // | + | Wichmann G, Bergelson J (2004). Effector genes of // |
- | Wichmann G, Ritchie D, Kousik CS, Bergelson J (2005). Reduced genetic variation occurs among genes of the highly clonal plant pathogen // | + | Wichmann G, Ritchie D, Kousik CS, Bergelson J (2005). Reduced genetic variation occurs among genes of the highly clonal plant pathogen // |
Zhao B, Dahlbeck D, Krasileva KV, Fong RW, Staskawicz BJ (2011). Computational and biochemical analysis of the // | Zhao B, Dahlbeck D, Krasileva KV, Fong RW, Staskawicz BJ (2011). Computational and biochemical analysis of the // | ||
+ | |||
+ | ===== Further reading ===== | ||
+ | |||
+ | Timilsina S, Abrahamian P, Potnis N, Minsavage GV, White FF, Staskawicz BJ, Jones JB, Vallad GE, Goss EM (2016). Analysis of sequenced genomes of // | ||
+ | |||
+ | ===== Acknowledgements ===== | ||
+ | |||
+ | This fact sheet is based upon work from COST Action CA16107 EuroXanth, supported by COST (European Cooperation in Science and Technology). | ||