====== Taxonomy and Diversity of Xanthomonads ====== This data is based on the review by [[https://doi.org/10.3390/microorganisms9040862|Catara et al. (2021]]), focused on the molecular methods for diagnosis, detection, and studies on the diversity of plant pathogenic //Xanthomonas//, concentrating especially on regulated pathogens in the European Union published as a collective effort of the [[https://euroxanth.eu/management/wg1|Working Group 1]] 'Diagnostics & Diversity–Population Structure' from the [[https://euroxanth.eu|EuroXanth]] COST Action CA16107. **Tools for molecular typing of regulated xanthomonads and beyond** ^ Pathogen ^ Fingerprints ^ VNTR/MLVA ^ CRISPR ^ MLSA/MLST ^ | **A1 list** ||||| | //X. citri// pv. //aurantifolii// | NA1 | NA | NA | [[https://doi.org/10.1371/journal.pone.0058474|Mhedbi-Hajri (2013)]] | | //X. citri// pv. //citri// | [[https://doi.org/10.1099/ijs.0.009514-0|Bui Thi Ngoc (2010)]], \\ [[https://doi.org/10.1111/mpp.12019|Escalon (2013)]] | [[https://doi.org/10.1111/j.1755-0998.2008.02242.x|Bui Thi Ngoc (2009)]], \\ [[https://doi.org/10.1111/1462-2920.12369|Vernière (2014)]], \\ [[https://doi.org/10.1371/journal.pone.0098129|Pruvost (2014)]], \\ [[https://doi.org/10.1111/1462-2920.12876|Leduc (2015)]], \\ [[https://doi.org/10.1111/mec.14007|Richard (2017)]], \\ [[https://doi.org/10.1111/eva.12788|Pruvost (2019)]], \\ [[https://doi.org/10.3390/microorganisms9050945|Pruvost (2021)]], \\ [[https://doi.org/10.1111/eva.13451|Pruvost (2022)]] | [[https://doi.org/10.1186/s12864-019-6267-z|Jeong (2019)]], \\ [[https://doi.org/10.3390/microorganisms10091715|Bellander (2022)]], \\ [[https://doi.org/10.1111/ppa.13729|Ibrahim (2023)]], \\ [[https://doi.org/10.1093/femsle/fnae005|Martins (2024)]] | [[https://doi.org/10.1099/ijs.0.009514-0|Bui Thi Ngoc (2010)]], \\ [[https://doi.org/10.1371/journal.pone.0058474|Mhedbi-Hajri (2013)]], \\ [[https://doi.org/10.1094/PHYTO-12-23-0490-R|Okoh (2024)]] | | //X. euvesicatoria// pv. //allii// | [[https://doi.org/10.1094/PHYTO.2004.94.2.184|Gent (2004)]], \\ [[https://doi.org/10.1094/PHYTO-95-0918|Gent (2005)]], \\ [[https://doi.org/10.1094/PHYTO-96-1345|Humeau (2006)]], \\ [[https://doi.org/10.1094/PHYTO-98-8-0919|Picard(2008)]] | [[https://doi.org/10.3390/microorganisms9030536|Vancheva (2021)]] | NA | [[https://doi.org/10.1371/journal.pone.0058474|Mhedbi-Hajri (2013)]] | | //X. oryzae// pv. //oryzae// | [[https://doi.org/10.1094/PHYTO.1997.87.3.302|George (1997)]] | [[https://doi.org/10.1128/AEM.02768-14|Poulin (2015)]] , \\ [[https://doi.org/10.1186/s12284-023-00648-x|Diallo (2023)]] | NA | [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|Hajri (2012)]], \\ [[https://doi.org/10.1094/PHYTO-07-13-0213-R|Wonni (2014)]], \\ [[https://doi.org/10.1111/jam.14813|Sakthivel (2021)]] | | //X. oryzae// pv. //oryzicola// | NA | [[https://doi.org/10.1094/PHYTO-04-12-0078-R|Zhao (2012)]], \\ [[https://doi.org/10.1128/AEM.02768-14|Poulin (2015)]] | NA | [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|Hajri (2012)]], \\ [[https://doi.org/10.1094/PHYTO-04-12-0078-R|Zhao (2012)]] | | **A2 list** ||||| | //X. arboricola// pv. //corylina// | NA | [[https://doi.org/10.1016/j.mimet.2014.02.017|Cesbron (2014)]], \\ [[https://doi.org/10.1128/AEM.00835-15|Essakhi (2015)]] | NA | [[https://doi.org/10.1128/AEM.00835-15|Essakhi (2015)]], \\ [[https://doi.org/10.1128/AEM.00050-15|Fischer-Le Saux (2015)]] | | //X. arboricola// pv. //juglandis// | [[https://doi.org/10.1023/A:1017951406237|Loreti (2001)]], \\ [[https://doi.org/10.1046/j.1439-0434.2001.00628.x|Scortichini (2001)]], \\ [[https://doi.org/10.1111/j.1365-3059.2010.02362.x|Hajri (2010)]] | [[https://doi.org/10.1016/j.mimet.2014.02.017|Cesbron (2014)]], \\ [[https://doi.org/10.1128/AEM.00835-15|Essakhi (2015)]] | NA | [[https://doi.org/10.1128/AEM.00835-15|Essakhi (2015)]], \\ [[https://doi.org/10.1128/AEM.00050-15|Fischer-Le Saux (2015)]] | | //X. arboricola// pv. //pruni// | [[https://doi.org/10.1094/PHYTO-95-1081|Boudon (2005)]] | [[https://doi.org/10.1016/j.mimet.2014.02.017|Cesbron (2014)]], \\ [[https://doi.org/10.1128/AEM.00835-15|Essakhi (2015)]] | NA | [[https://doi.org/10.1094/PHYTO-95-1081|Boudon (2005)]], \\ [[https://doi.org/10.1128/AEM.00835-15|Essakhi (2015)]], \\ [[https://doi.org/10.1128/AEM.00050-15|Fischer-Le Saux (2015)]] | | //X. axonopodis// pv. //poinsettiicola// | NA | NA | NA | [[https://doi.org/10.1094/PDIS-08-14-0867-RE|Rockey (2015)]] | | //X. euvesicatoria// pv. //euvesicatoria// | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]], \\ [[https://doi.org/10.1016/j.bjm.2017.08.011|Vancheva (2018)]], \\ [[https://doi.org/10.5423/PPJ.OA.09.2024.0138|Siddique (2025)]] | [[https://doi.org/10.3390/microorganisms9030536|Vancheva (2021)]] | NA | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]], \\ [[https://doi.org/10.1371/journal.pone.0058474|Mhedbi-Hajri (2013)]], \\ [[https://doi.org/10.1128/AEM.03000-14|Timilsina (2015)]], \\ [[https://doi.org/10.3390/microorganisms710046227|Dhakal (2019)]] | | //X. euvesicatoria// pv. //perforans// | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]] | [[https://doi.org/10.3390/microorganisms9030536|Vancheva (2021)]] | NA | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]], \\ [[https://doi.org/10.1128/AEM.03000-14|Timilsina (2015)]] | | //X. fragariae// | [[https://doi.org/10.1128/aem.62.9.3121-3127.1996|Pooler (1996)]], \\ [[https://doi.org/10.1128/AEM.64.10.3961-3965.1998|Roberts (1998)]] | [[https://doi.org/10.1099/mgen.0.000189/29874158/|Gétaz (2018)]] | [[https://doi.org/10.1099/mgen.0.000189/29874158/|Gétaz (2018)]] | [[https://doi.org/10.1099/mgen.0.000189/29874158/|Gétaz (2018)]], \\ [[https://doi.org/10.1094/PDIS-05-23-0933-SC|Wei (2023)]] | | //X. hortorum// pv. //gardneri// | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]] | NA | NA | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]], \\ [[https://doi.org/10.1128/AEM.03000-14|Timilsina (2015)]] | | //X. phaseoli// pv. //dieffenbachiae// | [[https://doi.org/10.1094/PDIS.2004.88.9.980|Khoodoo (2004)]], \\ [[https://doi.org/10.1094/PHYTO-08-12-0191-R|Donahoo (2013)]] | NA | NA | [[https://doi.org/10.1371/journal.pone.0058474|Mhedbi-Hajri (2013)]] | | //X. phaseoli// pv. //phaseoli//, //X. citri// pv. //fuscans// | [[https://doi.org/10.1094/PHYTO.2004.94.6.593|Mkandawire (2004)]] | NA | NA | [[https://doi.org/10.1371/journal.pone.0058474|Mhedbi-Hajri (2013)]] | | //X. translucens// pv. //translucens// | [[https://doi.org/10.1094/PHYTO.1997.87.11.1111|Bragard (1997)]], \\ [[https://doi.org/10.1094/PHYTO-96-0876|Rademaker (2006)]] | NA | NA | [[https://doi.org/10.1094/PHYTO-08-17-0271-R|Curland (2018)]], \\ [[https://doi.org/10.1128/AEM.01518-19|Khojasteh (2019)]], \\ [[https://doi.org/10.1094/PHYTO-04-19-0134-R|Curland (2020]], \\ [[https://doi.org/10.1094/PHYTO-10-22-0381-SA|Hong (2023)]] | | //X. vesicatoria// | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]], \\ [[https://doi.org/10.1016/j.bjm.2017.08.011|Vancheva (2018)]] | NA | NA | [[https://doi.org/10.1094/PDIS-94-8-0993|Hamza (2010)]], \\ [[https://doi.org/10.1016/j.syapm.2011.12.005|Hamza (2012)]], \\ [[https://doi.org/10.1128/AEM.03000-14|Timilsina (2015)]], \\ [[https://doi.org/10.3390/microorganisms710046227|Dhakal (2019)]] | | //Xylella fastidiosa// | [[https://doi.org/10.1128/AEM.67.9.4091-4095.2001|Coletta-Filho (2001)]], \\ [[https://doi.org/10.1128/AEM.68.8.3731-3736.2002|Coletta-Filho (2002)]], \\ [[https://doi.org/10.1094/PHYTO.2003.93.1.28|Coletta-Filho (2003)]], \\ [[https://doi.org/10.1094/PHYTO-97-10-1338|Montero-Astúa (2007)]] | [[https://doi.org/10.1128/AEM.67.9.4091-4095.2001|Coletta-Filho (2001)]], \\ [[https://doi.org/10.1128/AEM.68.8.3731-3736.2002|Coletta-Filho (2002)]], \\ [[https://doi.org/10.1094/PHYTO.2003.93.1.28|Coletta-Filho (2003)]], \\ [[https://doi.org/10.1094/PHYTO-97-10-1338|Montero-Astúa (2007)]], \\ [[https://doi.org/10.1038/s41598-020-68072-5|Mazzaglia (2020)]], \\ [[https://doi.org/10.1038/s42003-023-04499-6|Dupas (2023)]] | NA | [[https://doi.org/10.1128/AEM.71.12.8491-8499.2005|Scally (2005)]], \\ [[https://doi.org/10.1128/AEM.02388-07|Almeida (2008)]], \\ [[https://doi.org/10.1094/PHYTO-100-6-0601|Yuan (2010)]], \\ [[https://doi.org/10.1128/AEM.06679-11|Parker (2012)]], \\ [[https://doi.org/10.1128/AEM.01126-12|Nunney (2012)]], \\ [[https://doi.org/10.1128/AEM.03208-12|Nunney (2013)]], \\ [[https://doi.org/10.1128/AEM.02920-13|Nunney (2014a)]], \\ [[https://doi.org/10.1371/journal.pone.0112463|Nunney (2014b)]], \\ [[https://doi.org/10.1128/AEM.03299-15|Jacques (2015)]], \\ [[https://doi.org/10.1007/s00203-016-1245-1|Marcelletti (2016)]], \\ [[https://doi.org/10.1094/PHYTO-09-16-0321-R|Coletta-Filho (2017)]], \\ [[https://doi.org/10.1128/AEM.01521-19|Landa (2020)]], \\ [[https://doi.org/10.1094/PDIS-09-20-1900-RE|Aguilar-Granados (2021)]], \\ [[https://doi.org/10.1128/aem.02356-21|Kahn (2022)]] | | **Other** ||||| | //X. phaseoli// pv. //manihotis// | NA | [[https://doi.org/10.1371/journal.pone.0079704|Arrieta-Ortiz (2013)]], \\ [[https://doi.org/10.1186/1471-2180-14-161|Trujillo (2014)]], \\ [[https://doi.org/10.1094/PHYTO-06-18-0210-R|Rache (2019)]], \\ [[https://doi.org/10.1371/journal.pone.0285491|Rache (2023)]] | NA | NA | 1 NA: not available. ===== References ===== Aguilar-Granados A, Hernández-Macías B, Santiago-Martínez G, Ruiz-Medrano R, Kameyama-Kawabe L, Hinojosa-Moya J, Del Carmen Montes-Horcasitas M, Xoconostle-Cázares B (2021). Genetic diversity of //Xylella fastidiosa// in Mexican vineyards. Plant Dis. 105: 1490-1494. DOI: [[https://doi.org/10.1094/PDIS-09-20-1900-RE|10.1094/PDIS-09-20-1900-RE]] Almeida RP, Nascimento FE, Chau J, Prado SS, Tsai CW, Lopes SA, Lopes JR (2008). Genetic structure and biology of //Xylella fastidiosa// strains causing disease in citrus and coffee in Brazil. Appl. Environ. Microbiol. 74: 3690-3701. DOI: [[https://doi.org/10.1128/AEM.02388-07|10.1128/AEM.02388-07]] Arrieta-Ortiz ML, Rodríguez-R LM, Pérez-Quintero Á, Poulin L, Díaz AC, Arias Rojas N, Trujillo C, Restrepo Benavides M, Bart R, Boch J, Boureau T, Darrasse A, David P, Dugé de Bernonville T, Fontanilla P, Gagnevin L, Guérin F, Jacques MA, Lauber E, Lefeuvre P, Medina C, Medina E, Montenegro N, Muñoz Bodnar A, Noël LD, Ortiz Quiñones JF, Osorio D, Pardo C, Patil PB, Poussier S, Pruvost O, Robène-Soustrade I, Ryan RP, Tabima J, Urrego Morales OG, Vernière C, Carrere S, Verdier V, Szurek B, Restrepo S, López C, Koebnik R, Bernal A (2013). Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen //Xanthomonas axonopodis// pv. //manihotis// strain CIO151. PLoS One 8: e79704. DOI: [[https://doi.org/10.1371/journal.pone.0079704|10.1371/journal.pone.0079704]] Bellanger N, Dereeper A, Koebnik R (2022). Clustered regularly interspaced short palindromic repeats in //Xanthomonas citri //- witnesses to a global expansion of a bacterial pathogen over time. Microorganisms 10: 1715. DOI: [[http://doi.org/10.3390/microorganisms10091715|10.3390/microorganisms10091715]] Boudon S, Manceau C, Nottéghem JL (2005). Structure and origin of //Xanthomonas arboricola// pv. pruni populations causing bacterial spot of stone fruit trees in Western Europe. Phytopathology 95: 1081-1088. DOI: [[https://doi.org/10.1094/PHYTO-95-1081|10.1094/PHYTO-95-1081]] Bragard C, Singer E, Alizadeh A, Vauterin L, Maraite H, Swings J (1997). //Xanthomonas translucens// from small grains: diversity and phytopathological relevance. Phytopathology 87: 1111-1117. DOI: [[https://doi.org/10.1094/PHYTO.1997.87.11.1111|10.1094/PHYTO.1997.87.11.1111]] Bui Thi Ngoc L, Vernière C, Jouen E, Ah-You N, Lefeuvre P, Chiroleu F, Gagnevin L, Pruvost O. (2010). Amplified fragment length polymorphism and multilocus sequence analysis-based genotypic relatedness among pathogenic variants of //Xanthomonas citri// pv. citri and //Xanthomonas campestris// pv. bilvae. Int. J. Syst. Evol. Microbiol. 60: 515-525. DOI: [[https://doi.org/10.1099/ijs.0.009514-0|10.1099/ijs.0.009514-0]] Bui Thi Ngoc L, Verniere C, Vital K, Guerin F, Gagnevin L, Brisse S, Ah-You N, Pruvost O (2009). Development of 14 minisatellite markers for the citrus canker bacterium, //Xanthomonas citri// pv. citri. Mol. Ecol. Resour. 9: 125-127. DOI: [[https://doi.org/10.1111/j.1755-0998.2008.02242.x|10.1111/j.1755-0998.2008.02242.x]] Catara V, Cubero J, Pothier JF, Bosis E, Bragard C, Đermić E, Holeva MC, Jacques MA, Petter F, Pruvost O, Robène I, Studholme DJ, Tavares F, Vicente JG, Koebnik R, Costa J (2021). Trends in molecular diagnosis and diversity studies for phytosanitary regulated //Xanthomonas//. Microorganisms 9: 862. DOI: [[https://doi.org/10.3390/microorganisms9040862|10.3390/microorganisms9040862]] Cesbron S, Pothier J, Gironde S, Jacques MA, Manceau C (2014). Development of multilocus variable-number tandem repeat analysis (MLVA) for //Xanthomonas arboricola// pathovars. J. Microbiol. Methods 100: 84-90. DOI: [[https://doi.org/10.1016/j.mimet.2014.02.017|10.1016/j.mimet.2014.02.017]] Coletta-Filho HD, Francisco CS, Lopes JR, Muller C, Almeida RP (2017). Homologous recombination and //Xylella fastidiosa// host-pathogen associations in South America. Phytopathology 107: 305-312. DOI: [[https://doi.org/10.1094/PHYTO-09-16-0321-R|10.1094/PHYTO-09-16-0321-R]] Coletta-Filho HD, Machado MA (2002). Evaluation of the genetic structure of //Xylella fastidiosa// populations from different Citrus sinensis varieties. Appl. Environ. Microbiol. 68: 3731-3736. DOI: [[https://doi.org/10.1128/AEM.68.8.3731-3736.2002|10.1128/AEM.68.8.3731-3736.2002]] Coletta-Filho HD, Machado MA (2003). Geographical genetic structure of //Xylella fastidios//a from Citrus in São Paulo State, Brazil. Phytopathology 93: 28-34. DOI: [[https://doi.org/10.1094/PHYTO.2003.93.1.28|10.1094/PHYTO.2003.93.1.28]] Coletta-Filho HD, Takita MA, de Souza AA, Aguilar-Vildoso CI, Machado MA (2001). Differentiation of strains of //Xylella fastidiosa// by a variable number of tandem repeat analysis. Appl. Environ. Microbiol. 67: 4091-4095. DOI: [[https://doi.org/10.1128/AEM.67.9.4091-4095.2001|10.1128/AEM.67.9.4091-4095.2001]] Curland RD, Gao L, Bull CT, Vinatzer BA, Dill-Macky R, Van Eck L, Ishimaru CA (2018). Genetic diversity and virulence of wheat and barley strains of //Xanthomonas translucens// from the Upper Midwestern United States. Phytopathology 108: 443-453. DOI: [[https://doi.org/10.1094/PHYTO-08-17-0271-R|10.1094/PHYTO-08-17-0271-R]] Curland RD, Gao L, Hirsch CD, Ishimaru CA (2020). Localized genetic and phenotypic diversity of //Xanthomonas translucens// associated with bacterial leaf streak on wheat and barley in Minnesota. Phytopathology 110: 257-266. DOI: [[https://doi.org/10.1094/PHYTO-04-19-0134-R|10.1094/PHYTO-04-19-0134-R]] Dhakal U, Dobhal S, Alvarez AM, Arif M (2019). Phylogenetic analyses of xanthomonads causing bacterial leaf spot of tomato and pepper: //Xanthomonas euvesicatoria// revealed homologous populations despite distant geographical distribution. Microorganisms 7: 462. DOI: [[https://doi.org/10.3390/microorganisms7100462|10.3390/microorganisms7100462]] Diallo A, Wonni I, Sicard A, Blondin L, Gagnevin L, Vernière C, Szurek B, Hutin M (2023). Genetic structure and TALome analysis highlight a high level of diversity in Burkinabe //Xanthomonas oryzae// pv. //oryzae// populations. Rice (N Y) 16: 33. DOI: [[https://doi.org/10.1186/s12284-023-00648-x|10.1186/s12284-023-00648-x]] Donahoo RS, Jones JB, Lacy GH, Stromberg VK, Norman DJ (2013). Genetic analyses of //Xanthomonas axonopodis// pv. dieffenbachiae strains reveal distinct phylogenetic groups. Phytopathology 103: 237-244. DOI: [[https://doi.org/10.1094/PHYTO-08-12-0191-R|10.1094/PHYTO-08-12-0191-R]] Dupas E, Durand K, Rieux A, Briand M, Pruvost O, Cunty A, Denancé N, Donnadieu C, Legendre B, Lopez-Roques C, Cesbron S, Ravigné V, Jacques MA (2023). Suspicions of two bridgehead invasions of //Xylella fastidiosa// subsp. //multiplex// in France. Commun. Biol. 6: 103. DOI: [[https://doi.org/10.1038/s42003-023-04499-6|10.1038/s42003-023-04499-6]] Escalon A, Javegny S, Vernière C, Noël LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L (2013). Variations in type III effector repertoires, pathological phenotypes and host range of //Xanthomonas citri// pv. citri pathotypes. Mol. Plant Pathol. 14: 483-496. DOI: [[https://doi.org/10.1111/mpp.12019|10.1111/mpp.12019]] Essakhi S, Cesbron S, Fischer-Le Saux M, Bonneau S, Jacques MA, Manceau C (2015). Phylogenetic and variable-number tandem-repeat analyses identify nonpathogenic //Xanthomonas arboricola// lineages lacking the canonical type III secretion system. Appl. Environ. Microbiol. 81: 5395-5410. DOI: [[https://doi.org/10.1128/AEM.00835-15|10.1128/AEM.00835-15]] Fischer-Le Saux M, Bonneau S, Essakhi S, Manceau C, Jacques MA (2015). Aggressive emerging pathovars of //Xanthomonas arboricola// represent widespread epidemic clones distinct from poorly pathogenic strains, as revealed by multilocus sequence typing. Appl. Environ. Microbiol. 81: 4651-4668. DOI: [[https://doi.org/10.1128/AEM.00050-15|10.1128/AEM.00050-15]] Gent DH, Al-Saadi A, Gabriel DW, Louws FJ, Ishimaru CA, Schwartz HF (2005). Pathogenic and genetic relatedness among //Xanthomonas axonopodis// pv. allii and other pathovars of X. axonopodis. Phytopathology 95: 918-925. DOI: [[https://doi.org/10.1094/PHYTO-95-0918|10.1094/PHYTO-95-0918]] Gent DH, Schwartz HF, Ishimaru CA, Louws FJ, Cramer RA, Lawrence CB (2004). Polyphasic characterization of //Xanthomonas// strains from onion. Phytopathology 94: 184-195. DOI: [[https://doi.org/10.1094/PHYTO.2004.94.2.184|10.1094/PHYTO.2004.94.2.184]] George ML, Bustamam M, Cruz WT, Leach JE, Nelson RJ (1997). Movement of //Xanthomonas oryzae// pv. oryzae in Southeast Asia detected using PCR-based DNA fingerprinting. Phytopathology 87: 302-309. DOI: [[https://doi.org/10.1094/PHYTO.1997.87.3.302|10.1094/PHYTO.1997.87.3.302]] Gétaz M, Krijger M, Rezzonico F, Smits THM, van der Wolf JM, Pothier JF (2018). Genome-based population structure analysis of the strawberry plant pathogen //Xanthomonas fragariae// reveals two distinct groups that evolved independently before its species description. Microb. Genom. 4: e000189. DOI: [[https://doi.org/10.1099/mgen.0.000189|10.1099/mgen.0.000189]] Hajri A, Brin C, Zhao S, David P, Feng JX, Koebnik R, Szurek B, Verdier V, Boureau T, Poussier S (2012). Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of //Xanthomonas oryzae//. Mol. Plant Pathol. 13: 288-302. DOI: [[https://doi.org/10.1111/j.1364-3703.2011.00745.x|10.1111/j.1364-3703.2011.00745.x]] Hajri A, Meyer D, Delort F, Guillaumès J, Brin C, Manceau C (2010). Identification of a genetic lineage within //Xanthomonas arboricola// pv. juglandis as the causal agent of vertical oozing canker of Persian (English) walnut in France. Plant Pathol. 59: 1014-1022. DOI: [[https://doi.org/10.1111/j.1365-3059.2010.02362.x|10.1111/j.1365-3059.2010.02362.x]] Hamza AA, Robène-Soustrade I, Jouen E, Gagnevin L, Lefeuvre P, Chiroleu F, Pruvost O (2010). Genetic and pathological diversity among //Xanthomonas// strains responsible for bacterial spot on tomato and pepper in the Southwest Indian Ocean Region. Plant Dis. 94: 993-999. DOI: [[https://doi.org/10.1094/PDIS-94-8-0993|10.1094/PDIS-94-8-0993]] Hamza AA, Robene-Soustrade I, Jouen E, Lefeuvre P, Chiroleu F, Fisher-Le Saux M, Gagnevin L, Pruvost O (2012). MultiLocus Sequence Analysis- and Amplified Fragment Length Polymorphism-based characterization of xanthomonads associated with bacterial spot of tomato and pepper and their relatedness to //Xanthomonas// species. Syst. Appl. Microbiol. 35: 183-190. DOI: [[https://doi.org/10.1016/j.syapm.2011.12.005|10.1016/j.syapm.2011.12.005]] Hong E, Bankole I, Zhao B, Shi G, Buck J, Feng J, Curland RD, Baldwin TT, Chapara VR, Liu Z (2023). DNA markers, pathogenicity test and multilocus sequence analysis to differentiate and characterize cereal specific //Xanthomonas translucens// strains. Phytopathology 113: 2062-2072. DOI: [[https://doi.org/10.1094/PHYTO-10-22-0381-SA|10.1094/PHYTO-10-22-0381-SA]] Humeau L, Roumagnac P, Picard Y, Robène-Soustrade I, Chiroleu F, Gagnevin L, Pruvost O (2006). Quantitative and molecular epidemiology of bacterial blight of onion in seed production fields. Phytopathology 96: 1345-1354. DOI: [[https://doi.org/10.1094/PHYTO-96-1345|10.1094/PHYTO-96-1345]] Ibrahim YE, Widyawan A, Olivier P, Sharafaddin AH, Karine B, Al‐Saleh MA (2023). Characterization of //Xanthomonas citri// pv. //citri// from the western and south-western regions of Saudi Arabia based on CRISPR typing. Plant Pathol. 72: 1149-1159. DOI: [[https://doi.org/10.1111/ppa.13729|10.1111/ppa.13729]] Jacques MA, Denancé N, Legendre B, Morel E, Briand M, Mississipi S, Durand K, Olivier V, Portier P, Poliakoff F, Crouzillat D (2015). New coffee plant-infecting //Xylella fastidiosa// variants derived via homologous recombination. Appl. Environ. Microbiol. 82: 1556-1568. DOI: [[https://doi.org/10.1128/AEM.03299-15|10.1128/AEM.03299-15]] Jeong K, Muñoz-Bodnar A, Arias Rojas N, Poulin L, Rodriguez-R LM, Gagnevin L, Vernière C, Pruvost O, Koebnik R (2019). CRISPR elements provide a new framework for the genealogy of the citrus canker pathogen //Xanthomonas citri// pv. citri. BMC Genomics 20: 917. DOI: [[https://doi.org/10.1186/s12864-019-6267-z|10.1186/s12864-019-6267-z]] Kahn AK, Almeida RPP (2022). Phylogenetics of historical host switches in a bacterial plant pathogen. Appl. Environ. Microbiol. 88: e0235621. DOI: [[https://doi.org/10.1128/aem.02356-21|10.1128/aem.02356-21]] Khojasteh M, Taghavi SM, Khodaygan P, Hamzehzarghani H, Chen G, Bragard C, Koebnik R, Osdaghi E (2019). Molecular typing reveals high genetic diversity of //Xanthomonas translucens// strains infecting small-grain cereals in Iran. Appl. Environ. Microbiol. 85: e01518-19. DOI: [[https://doi.org/10.1128/AEM.01518-19|10.1128/AEM.01518-19]] Khoodoo MHR, Jaufeerally-Fakim Y (2004). RAPD-PCR fingerprinting and Southern analysis of //Xanthomonas axonopodis// pv. dieffenbachiae strains isolated from different aroid hosts and locations. Plant Dis. 88: 980-988. DOI: [[http://doi.org/10.1094/PDIS.2004.88.9.980|10.1094/PDIS.2004.88.9.980]] Landa BB, Castillo AI, Giampetruzzi A, Kahn A, Román-Écija M, Velasco-Amo MP, Navas-Cortés JA, Marco-Noales E, Barbé S, Moralejo E, Coletta-Filho HD, Saldarelli P, Saponari M, Almeida RPP (2020). Emergence of a plant pathogen in Europe associated with multiple intercontinental introductions. Appl. Environ. Microbiol. 86: e01521-19. DOI: [[https://doi.org/10.1128/AEM.01521-19|10.1128/AEM.01521-19]] Leduc A, Traoré YN, Boyer K, Magne M, Grygiel P, Juhasz CC, Boyer C, Guerin F, Wonni I, Ouedraogo L, Vernière C, Ravigné V, Pruvost O (2015). Bridgehead invasion of a monomorphic plant pathogenic bacterium: //Xanthomonas citri// pv. citri, an emerging citrus pathogen in Mali and Burkina Faso. Environ. Microbiol. 17: 4429-4442. DOI: [[https://doi.org/10.1111/1462-2920.12876|10.1111/1462-2920.12876]] Loreti S, Gallelli A, Belisario A, Wajnberg E, Corazza L (2001). Investigation of genomic variability of //Xanthomonas arboricola// pv. juglandis by AFLP analysis. Eur. J. Plant Pathol. 107: 583-591. DOI:[[https://doi.org/10.1023/A:1017951406237|10.1023/A:1017951406237]] Marcelletti S, Scortichini M (2016). Genome-wide comparison and taxonomic relatedness of multiple //Xylella fastidiosa// strains reveal the occurrence of three subspecies and a new //Xylella// species. Arch. Microbiol. 198: 803-812. doi: [[https://doi.org/10.1007/s00203-016-1245-1|10.1007/s00203-016-1245-1]] Martins PMM, Granato LM, Morgan T, Nalin JL, Takita MA, Alfenas-Zerbini P, de Souza AA (2024). Analysis of CRISPR-Cas loci distribution in //Xanthomonas citri// and its possible control by the quorum sensing system. FEMS Microbiol. Lett. 371: fnae005. DOI: [[https://doi.org/10.1093/femsle/fnae005|10.1093/femsle/fnae005]] Mazzaglia A, Rahi YJ, Taratufolo MC, Tatì M, Turco S, Ciarroni S, Tagliavento V, Valentini F, D'Onghia AM, Balestra GM (2020). A new inclusive MLVA assay to investigate genetic variability of //Xylella fastidiosa// with a specific focus on the Apulian outbreak in Italy. Sci. Rep. 10: 10856. DOI: [[https://doi.org/10.1038/s41598-020-68072-5|10.1038/s41598-020-68072-5]] Mhedbi-Hajri N, Hajri A, Boureau T, Darrasse A, Durand K, Brin C, Fischer-Le Saux M, Manceau C, Poussier S, Pruvost O, Lemaire C, Jacques MA (2013). Evolutionary history of the plant pathogenic bacterium //Xanthomonas axonopodi//s. PLoS One 8: e58474. DOI: [[https://doi.org/10.1371/journal.pone.0058474|10.1371/journal.pone.0058474]] Mkandawire AB, Mabagala RB, Guzmán P, Gepts P, Gilbertson RL (2004). Genetic diversity and pathogenic variation of common blight bacteria (//Xanthomonas campestris// pv. phaseoli and //X. campestris// pv. phaseoli var. fuscans) suggests pathogen coevolution with the common bean. Phytopathology 94: 593-603. DOI: [[https://doi.org/10.1094/PHYTO.2004.94.6.593|10.1094/PHYTO.2004.94.6.593]] Montero-Astúa M, Hartung JS, Aguilar E, Chacón C, Li W, Albertazzi FJ, Rivera C (2007). Genetic diversity of //Xylella fastidiosa// strains from Costa Rica, São Paulo, Brazil, and United States. Phytopathology 97: 1338-1347. DOI: [[https://doi.org/10.1094/PHYTO-97-10-1338|10.1094/PHYTO-97-10-1338]] Nunney L, Hopkins DL, Morano LD, Russell SE, Stouthamer R (2014a). Intersubspecific recombination in //Xylella fastidiosa// Strains native to the United States: infection of novel hosts associated with an unsuccessful invasion. Appl. Environ. Microbiol. 80: 1159-1169. DOI: [[https://doi.org/10.1128/AEM.02920-13|10.1128/AEM.02920-13]] Nunney L, Ortiz B, Russell SA, Ruiz Sánchez R, Stouthamer R (2014b). The complex biogeography of the plant pathogen //Xylella fastidiosa//: genetic evidence of introductions and Subspecific introgression in Central America. PLoS One 9: e112463. DOI: [[https://doi.org/10.1371/journal.pone.0112463|10.1371/journal.pone.0112463]] Nunney L, Vickerman DB, Bromley RE, Russell SA, Hartman JR, Morano LD, Stouthamer R (2013). Recent evolutionary radiation and host plant specialization in the //Xylella fastidiosa// subspecies native to the United States. Appl. Environ. Microbiol. 79: 2189-2200. DOI: [[https://doi.org/10.1128/AEM.03208-12|10.1128/AEM.03208-12]] Nunney L, Yuan X, Bromley RE, Stouthamer R (2012). Detecting genetic introgression: high levels of intersubspecific recombination found in //Xylella fastidiosa// in Brazil. Appl. Environ. Microbiol. 78: 4702-4714. DOI: [[https://doi.org/10.1128/AEM.01126-12|10.1128/AEM.01126-12]] Okoh EB, Payne M, Lan R, Riegler M, Chapman T, Bogema D (2024). A multilocus sequence typing scheme for rapid identification of //Xanthomonas citri// based on whole genome sequencing data. Phytopathology 114: 1480-1489 . DOI: [[https://doi.org/10.1094/PHYTO-12-23-0490-R|10.1094/PHYTO-12-23-0490-R]] Parker JK, Havird JC, De La Fuente L (2012). Differentiation of //Xylella fastidiosa// strains via multilocus sequence analysis of environmentally mediated genes (MLSA-E). Appl. Environ. Microbiol. 78: 1385-1396. DOI: [[https://doi.org/10.1128/AEM.06679-11|10.1128/AEM.06679-11]] Picard Y, Roumagnac P, Legrand D, Humeau L, Robène-Soustrade I, Chiroleu F, Gagnevin L, Pruvost O (2008). Polyphasic characterization of// Xanthomonas axonopodis// pv. allii associated with outbreaks of bacterial blight on three //Allium// species in the Mascarene archipelago. Phytopathology 98: 919-925. DOI: [[https://doi.org/10.1094/PHYTO-98-8-0919|10.1094/PHYTO-98-8-0919]] Pooler MR, Ritchie DF, Hartung JS (1996). Genetic relationships among strains of //Xanthomonas fragariae// based on random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and enterobacterial repetitive intergenic consensus PCR data and generation of multiplexed PCR primers useful for the identification of this phytopathogen. Appl. Environ. Microbiol. 62: 3121-3127. DOI: [[https://doi.org/10.1128/aem.62.9.3121-3127.1996|10.1128/aem.62.9.3121-3127.1996]] Poulin L, Grygiel P, Magne M, Gagnevin L, Rodriguez-R LM, Forero Serna N, Zhao S, El Rafii M, Dao S, Tekete C, Wonni I, Koita O, Pruvost O, Verdier V, Vernière C, Koebnik R (2015). New multilocus variable-number tandem-repeat analysis tool for surveillance and local epidemiology of bacterial leaf blight and bacterial leaf streak of rice caused by //Xanthomonas oryzae//. Appl. Environ. Microbiol. 81: 688-698. DOI: [[https://doi.org/10.1128/AEM.02768-14|10.1128/AEM.02768-14]] Pruvost O, Boyer K, Ravigné V, Richard D, Vernière C (2019). Deciphering how plant pathogenic bacteria disperse and meet: Molecular epidemiology of //Xanthomonas citri// pv. citri at microgeographic scales in a tropical area of Asiatic citrus canker endemicity. Evol. Appl. 12: 1523-1538. DOI: [[https://doi.org/10.1111/eva.12788|10.1111/eva.12788]] Pruvost O, Ibrahim YE, Sharafaddin AH, Boyer K, Widyawan A, Al-Saleh MA (2022). Molecular epidemiology of the citrus bacterial pathogen //Xanthomonas citri// pv. //citri// from the Arabian Peninsula reveals a complex structure of specialist and generalist strains. Evol. Appl. 15: 1423-1435. DOI: [[https://doi.org/10.1111/eva.13451|10.1111/eva.13451]] Pruvost O, Magne M, Boyer K, Leduc A, Tourterel C, Drevet C, Ravigné V, Gagnevin L, Guérin F, Chiroleu F, Koebnik R, Verdier V, Vernière C (2014). A MLVA genotyping scheme for global surveillance of the citrus pathogen //Xanthomonas citri// pv. citri suggests a worldwide geographical expansion of a single genetic lineage. PLoS One 9: e98129. DOI: [[https://doi.org/10.1371/journal.pone.0098129|10.1371/journal.pone.0098129]] Pruvost O, Richard D, Boyer K, Javegny S, Boyer C, Chiroleu F, Grygiel P, Parvedy E, Robène I, Maillot-Lebon V, Hamza A, Lobin KK, Naiken M, Vernière C (2021). Diversity and geographical structure of //Xanthomonas citri// pv. citri on Citrus in the South West Indian Ocean Region. Microorganisms 9: 945. DOI: [[https://doi.org/10.3390/microorganisms9050945|10.3390/microorganisms9050945]] Rache L, Blondin L, Diaz Tatis P, Flores C, Camargo A, Kante M, Wonni I, López C, Szurek B, Dupas S, Pruvost O, Koebnik R, Restrepo S, Bernal A, Vernière C (2023). A minisatellite-based MLVA for deciphering the global epidemiology of the bacterial cassava pathogen //Xanthomonas phaseoli// pv. //manihotis//. PLoS One 18: e0285491. DOI: [[https://doi.org/10.1371/journal.pone.0285491|10.1371/journal.pone.0285491]] Rache L, Blondin L, Flores C, Trujillo C, Szurek B, Restrepo S, Koebnik R, Bernal A, Vernière C (2019). An optimized microsatellite scheme for assessing populations of //Xanthomonas phaseoli// pv. //manihotis//. Phytopathology 109: 859-869. DOI: [[https://doi.org/10.1094/PHYTO-06-18-0210-R|10.1094/PHYTO-06-18-0210-R]] Rademaker JL, Norman DJ, Forster RL, Louws FJ, Schultz MH, de Bruijn FJ (2006). Classification and identification of //Xanthomonas translucens// isolates, including those pathogenic to ornamental asparagus. Phytopathology 96: 876-884. DOI: [[https://doi.org/10.1094/PHYTO-96-0876|10.1094/PHYTO-96-0876]] Richard D, Ravigné V, Rieux A, Facon B, Boyer C, Boyer K, Grygiel P, Javegny S, Terville M, Canteros BI, Robène I, Vernière C, Chabirand A, Pruvost O, Lefeuvre P (2017). Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements. Mol. Ecol. 26: 2131-2149. doi: [[https://doi.org/10.1111/mec.14007|10.1111/mec.14007]] Roberts PD, Hodge NC, Bouzar H, Jones JB, Stall RE, Berger RD, Chase AR (1998). Relatedness of strains of //Xanthomonas fragariae// by restriction fragment length polymorphism, DNA-DNA reassociation, and fatty acid analyses. Appl. Environ. Microbiol. 64: 3961-3965. DOI: [[https://doi.org/10.1128/AEM.64.10.3961-3965.1998|10.1128/AEM.64.10.3961-3965.1998]] Rockey W, Potnis N, Timilsina S, Hong JC, Vallad GE, Jones JB, Norman DJ (2015). Multilocus sequence analysis reveals genetic diversity in xanthomonads associated with poinsettia production. Plant Dis. 99: 874-882. DOI: [[https://doi.org/10.1094/PDIS-08-14-0867-RE|10.1094/PDIS-08-14-0867-RE]] Sakthivel K, Kumar A, Gautam RK, Manigundan K, Laha GS, Velazhahan R, Singh R, Yadav IS (2021). Intra-regional diversity of rice bacterial blight pathogen, //Xanthomonas oryzae// pv. oryzae, in the Andaman Islands, India: revelation by pathotyping and multilocus sequence typing. J. Appl. Microbiol. 130: 1259-1272. DOI: [[https://doi.org/10.1111/jam.14813|10.1111/jam.14813]] Scally M, Schuenzel EL, Stouthamer R, Nunney L (2005). Multilocus sequence type system for the plant pathogen //Xylella fastidiosa// and relative contributions of recombination and point mutation to clonal diversity. Appl. Environ. Microbiol. 71: 8491-8499. DOI: [[https://doi.org/10.1128/AEM.71.12.8491-8499.2005|10.1128/AEM.71.12.8491-8499.2005]] Scortichini M, Marchesi U, Di Prospero P (2001). Genetic diversity of //Xanthomonas arboricola// pv. juglandis (synonyms: //X. campestris// pv. juglandis; //X. juglandis// pv. juglandis) strains from different geographical areas shown by repetitive polymerase chain reaction genomic fingerprinting. J. Phytopathol. 149: 325-332. DOI: [[https://doi.org/10.1046/j.1439-0434.2001.00628.x|10.1046/j.1439-0434.2001.00628.x]] Siddique F, Xiaofeng X, Zhe N, Mingxiu Y, Dawei L, Yuting L, Naibo Y, Younis H, Niaz N, Junhua Z (2025). Genetic diversity and population structure of phyllosphere-associated //Xanthomonas euvesicatoria// bacteria in //Physalis pubescens// based on BOX-PCR and ERIC-PCR in China. Plant Pathol. J. 41: 64-77. DOI: [[https://doi.org/10.5423/PPJ.OA.09.2024.0138|10.5423/PPJ.OA.09.2024.0138]] Timilsina S, Jibrin MO, Potnis N, Minsavage GV, Kebede M, Schwartz A, Bart R, Staskawicz B, Boyer C, Vallad GE, Pruvost O, Jones JB, Goss EM (2015). Multilocus sequence analysis of xanthomonads causing bacterial spot of tomato and pepper plants reveals strains generated by recombination among species and recent global spread of //Xanthomonas gardneri.// Appl. Environ. Microbiol. 81: 1520-1529. DOI: [[https://doi.org/10.1128/AEM.03000-14|10.1128/AEM.03000-14]] Trujillo CA, Arias-Rojas N, Poulin L, Medina CA, Tapiero A, Restrepo S, Koebnik R, Bernal AJ (2014). Population typing of the causal agent of cassava bacterial blight in the Eastern Plains of Colombia using two types of molecular markers. BMC Microbiol. 14: 161. DOI: [[https://doi.org/10.1186/1471-2180-14-161|10.1186/1471-2180-14-161]] Vancheva T, Bogatzevska N, Moncheva P, Mitrev S, Vernière C, Koebnik R (2021). Molecular epidemiology of //Xanthomonas euvesicatoria// strains from the Balkan Peninsula revealed by a new multiple-locus variable-number tandem-repeat analysis scheme. Microorganisms 9: 536. DOI: [[https://doi.org/10.3390/microorganisms9030536|10.3390/microorganisms9030536]] Vancheva T, Stoyanova M, Tasheva-Terzieva E, Bogatzevska N, Moncheva P (2018). Molecular methods for diversity assessment among xanthomonads of Bulgarian and Macedonian pepper. Braz. J. Microbiol. 49: 246-259. DOI: [[https://doi.org/10.1016/j.bjm.2017.08.011|10.1016/j.bjm.2017.08.011]] Vernière C, Bui Thi Ngoc L, Jarne P, Ravigné V, Guérin F, Gagnevin L, Le Mai N, Chau NM, Pruvost O (2014). Highly polymorphic markers reveal the establishment of an invasive lineage of the citrus bacterial pathogen //Xanthomonas citri// pv. //citri// in its area of origin. Environ, Microbiol. 16: 2226-2237. doi: [[https://doi.org/10.1111/1462-2920.12369|10.1111/1462-2920.12369]] Wei F, Liang X, Shi JC, Luo J, Qiu LJ, Li XX, Lu LJ, Wen Y, Feng J (2023). Pan-genomic analysis identifies the Chinese strain as a new subspecies of //Xanthomonas fragariae//. Plant Dis. 108: 45-49. DOI: [[https://doi.org/10.1094/PDIS-05-23-0933-SC|10.1094/PDIS-05-23-0933-SC]] Wonni I, Cottyn B, Detemmerman L, Dao S, Ouedraogo L, Sarra S, Tekete C, Poussier S, Corral R, Triplett L, Koita O, Koebnik R, Leach J, Szurek B, Maes M, Verdier V (2014). Analysis of //Xanthomonas oryzae// pv. oryzicola population in Mali and Burkina Faso reveals a high level of genetic and pathogenic diversity. Phytopathology 104: 520-531. DOI: [[https://doi.org/10.1094/PHYTO-07-13-0213-R|10.1094/PHYTO-07-13-0213-R]] Yuan X, Morano L, Bromley R, Spring-Pearson S, Stouthamer R, Nunney L (2010). Multilocus sequence typing of //Xylella fastidiosa// causing Pierce's disease and oleander leaf scorch in the United States. Phytopathology 100: 601-611. DOI: [[https://doi.org/10.1094/PHYTO-100-6-0601|10.1094/PHYTO-100-6-0601]] Zhao S, Poulin L, Rodriguez-R LM, Serna NF, Liu SY, Wonni I, Szurek B, Verdier V, Leach JE, He YQ, Feng JX, Koebnik R (2012). Development of a variable number of tandem repeats typing scheme for the bacterial rice pathogen //Xanthomonas oryzae// pv. oryzicola. Phytopathology 102: 948-956. DOI: [[https://doi.org/10.1094/PHYTO-04-12-0078-R|10.1094/PHYTO-04-12-0078-R]] ===== Further reading ===== Baldi P, La Porta N (2017). //Xylella fastidiosa//: host range and advance in molecular identification techniques. Front. Plant Sci. 8: 944. DOI: [[https://doi.org/10.3389/fpls.2017.00944|10.3389/fpls.2017.00944]] Nunney L, Elfekih S, Stouthamer R (2012). The importance of multilocus sequence typing: cautionary tales from the bacterium //Xylella fastidiosa//. Phytopathology 102: 456-460. DOI: [[https://doi.org/10.1094/PHYTO-10-11-0298|10.1094/PHYTO-10-11-0298]]